
2 6 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E

ore than a decade ago Fred Brooks wrote, “The hardest single part of
building a software system is deciding precisely what to build. No other
part of the conceptual work is so difficult as establishing the detailed
technical requirements…. No other part of the work so cripples the re-

sulting system if done wrong. No other part is more difficult to rectify later.”1

Throughout our industry’s history, we have struggled with this truth. Defining and
applying good, complete requirements is hard work, and success in this endeavor
has eluded many of us. Yet, we continue to make progress. As with many fields,
researchers propose new methods to deal with the problem, and practitioners even-
tually adopt some of them. This lack of complete adoption is known as the
research–practice gap.

Daniel M. Berry, Technion–Israel Institute of Technology

Brian Lawrence, Coyote Valley Software Consulting

REQUIREMENTS
ENGINEERING

S lowly, we are br idg ing the gap bet ween requi rements
engineer ing research and prac t i ce. The gap i s s t i l l l a rge,
but we have a few more prac t i ce-va l idated methods and
too ls in our pockets, and the br idge bu i ld ing cont inues.

M

Guest Editors’ Introduction

REQUIREMENTS
ENGINEERING

.

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 2 7

CLOSING THE GAP

In their March 1994 IEEE Software guest editors’
introduction, Alan Davis and Pei Hsia—the general
chair and one of the program cochairs for the 1994
International Conference on Requirements Engi-
neering—reported that the gap between software
engineering research and practice is no more evi-
dent than in the field of re-
quirements engineering.2 We
are happy to report now that
in SE research generally, and
in requirements engineering
research particularly, there appears to be a fairly uni-
versal recognition of this gap. An increasing per-
centage of the research done over the last two years
has addressed this gap and focused on immediately
applicable ideas or on understanding actual prac-
tice. For example, in ICSE ’97,3 five papers validated
or debunked popular conceptions about the in-
spection process, and one of us (Berry) walked away
from that conference with a firmer understanding
of the inspection process.

Today, more software engineers recognize that
any description of a new approach to solving a
hard problem in SE must come from practical ex-
perience or be accompanied by a description of at
least one actual application of the approach to an
industrial-strength problem and an assessment of
that effort’s success. Fewer published papers pre-
sent “yet another method” that hasn’t been tried in
industry; fewer authors beg readers to accept their
unproved conviction that their method will obvi-
ously work, when in fact, their method is as obscure
as any other.

In this spirit, the ICRE ’98 program committee
established an important criterion for paper ac-
ceptance: bridging the gap between research
and practice.4

CONVENTIONAL AND
NONCONVENTIONAL WISDOM

In the March ’96 issue of this magazine, ICRE
’96 program cochairs Jawed Siddiqi and M.
Chandra Shekaran wrote the guest editors’ intro-
duction, updating the current status of require-
ments engineering.5

In taking stock of the field, they observed that re-
quirements engineering attempts to bring an engi-
neering orientation to traditional information sys-

tem analysis and apply the result to all software en-
gineering efforts from the beginning. As with other
attempts to be more engineering-like, this has led
to a variety of requirements engineering methods
and tools, developed primarily by researchers. The
major drawback of these methods and tools has
been insufficient attention to how the context of the
proposed system affects its requirements, develop-

ment, and evolution. The context of a computer-
based system is the real-world environment in which
the system operates, including the social structure
and the people therein. Practitioners are used to fo-
cusing on context and do so as a matter of course. So
they find the methods and tools wanting. Thus, the
editors concluded, the gap between practice and re-
search remained wide.

However, Siddiqi and Shekaran saw some hope
when they said, “the conventional wisdom about
requirements engineering is rapidly evolving, …and
the latest research is taking context into account.”
They reviewed the history of developments in re-
quirements engineering and showed that it has fol-
lowed the same trends as in systems development.
The first wave focused on writing code. The second
wave focused on the development life cycle, of
which requirements analysis is the first phase. The
third wave focused on evolutionary development
and the implication that requirements are always
incomplete; each stage involves identifying new re-
quirements based on experiences from previous
stages. As a result, today we recognize that require-
ments engineering has its own life cycle, although
we still debate which activities are part of it.

Another longstanding debate arises out of the
not universally supported conventional wisdom
that requirements are a statement of what a system
will do, with no reference to how the system does
what it does. Researchers generally stick to this
point of view, while practitioners have long been
comfortable with the notion that requirements and
design affect each other.

The articles in the ’96 special issue of IEEE
Software focused on the identification of nonfunc-
tional or quality requirements, management of mul-
tiple requirements perspectives, and traceability of
requirements, particularly to the context in which
they are situated.

Practitioners have long known that
requirements and design affect each other.

.

2 8 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8

THE DEBATES CONTINUE

Still other debates continue to this day. One con-
cerns the distinction between functional and non-
functional requirements. Here too, the research in-
sists on this distinction, whereas practice accepts
that in many cases the distinction is unclear.

Another debate concerns the nature of the sys-
tems being developed and their requirements.
Heretofore, most requirements engineering work
focused on large, one-of-a-kind systems, developed
for a specific customer under a contract that in-
cludes requirements, with the idea that imple-
menting less than the full set of requirements

amounts to failure to implement the contracted sys-
tem. However, practitioners face several realities:

♦ Most software development today is market
driven, developed to satisfy anonymous customers
and to keep them coming back to buy upgrades.

♦ There are not enough resources to build soft-
ware that can do everything the customer wants. It
is essential to rank requirements so that, in the face
of pressure to release quickly, the most important
requirements can be implemented first.

♦ Requirements are inherently incomplete,
mainly because they are never fully understood
and because they typically change as a result of
system deployment.

S I G N P O S T S A N D L A N D M A R K S

OVERVIEW BOOKS

Gerald Weinberg, Rethinking Analysis and Design, Dorset
House, New York, 1988.

Donald Gause and Gerald Weinberg, Exploring Require-
ments, Dorset House, New York, 1989.

Donald Gause and Gerald Weinberg, Are Your Lights On?
Dorset House, New York, 1990.

Alan M. Davis, Software Requirements: Objects, Functions,
and States, Prentice Hall, Upper Saddle River, N.J., 1993.

Michael Jackson, Software Requirements and Specifi-
cations: A Lexicon of Practice, Principles and Prejudices,
Addison Wesley Longman, Reading, Mass., 1995.

Pericles Loucopoulos and Vassilis Karakostas, System
Requirements Engineering, McGraw-Hill, New York, 1995.

Roel J. Wieringa, Requirements Engineering: Frameworks
for Understanding, John Wiley & Sons, New York, 1996.

Hugh Beyer and Karen Holtzblatt, Contextual Design:
Defining Customer-Centered Systems, Morgan Kaufmann,
San Francisco, 1998.

PERIODICALS

This special issue represents the seventh that the IEEE
Computer Society has devoted to requirements engineer-
ing. The previous ones were IEEE Transactions on Software
Engineering, Jan. 1975; Computer, May 1982; Computer, Apr.
1985; IEEE Transactions on Software Engineering, Mar. 1991;
IEEE Software, Mar. 1994; IEEE Software, Mar. 1996 (annual
archive available online to electronic and combo
subscribers).

In 1996, Springer-Verlag started a new journal,
Requirements Engineering, and The Annals of Software
Engineering devoted Volume 3, 1997, to the topic.

PROCEEDINGS

The International Symposium on Requirements

Engineering (ISRE) convenes in odd-numbered years.
The International Conference on Requirements Engi-

neering (ICRE) takes place in April of even-numbered years in
Colorado Springs, Colorado. The IEEE Computer Society Press
publishes their proceedings.

Requirements engineering sessions are scheduled
increasingly at the various software engineering meetings,
such as the International Conference on Software Engi-
neering (ICSE), the European Software Engineering Con-
ference (ESEC), and the Brazilian Symposium on Software
Engineering (SBES).

Other conferences deal largely or in part with
requirements engineering, for example, the International
Workshop on Software Specification and Design (IWSSD)
and the International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ).

ANTHOLOGIES

Richard H. Thayer and Merlin Dorfman, Software
Requirements Engineering, second edition, IEEE Computer
Society Press, Los Alamitos, Calif., 1997.

WEB AND FTP SITES

Renoir, the European Union Requirements Engineering
Network of Excellence: http://www.cs.ucl.ac.uk/
research/renoir/

Requirements Engineering Newsletter: the files named
renl* at ftp://ftp.cs.city.ac.uk/pub/requirements/

The CSIRO–Macquarie University Joint Research Centre
for Advanced Systems Engineering (JRCASE) Requirements
Engineering Web page: http://www.jrcase.mq.edu.au/
seweb/requirements/requirements.html

Information about a software requirements engineer-
ing mailing list: http://www.jrcase.mq.edu.au/~didar/
seweb/groups.html

.

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 2 9

Finally, practitioners have pointed to two par-
ticular needs that methods and tools must fulfill:
First, the portion of the architectural design neces-
sary for effective requirements engineering must
be integrated into the requirements. Second, our
methods and tools must become more accessible.

IN THIS ISSUE

This issue contains two of the best articles sub-
mitted and accepted for presentation at ICRE ’98,
scheduled for 6–10 April in Colorado Springs,
Colorado. In the spirit of ICRE ’94 and the ’94 IEEE
Software special issue, the articles selected for this
special issue, “Acquiring COTS Software Selection
Requirements” by Neil A. Maiden and Cornelius
Ncube and “Scenarios in System Development:
Current Practice” by Klaus Weidenhaupt, Klaus Pohl,
Mathias Jarke , and Peter Haumer, deal with the trans-
lation of previously developed research ideas into
practice and report what has been learned from real-
life application. See page 4 for summaries of these
and the other articles in this issue. Both articles make
compelling reading in that what was learned often
surprised not only the authors but also us.

Also, the March 1994 guest editors provided a
requirements engineering reading list. We have up-
dated it in the boxed text “Signposts and Land-
marks” on page 28.

This issue’s Point–Counterpoint deals with who
should own the requirements of a project. In the
Point essay Carl Clavadetscher argues that the users
need to own and manage them; only users know
enough about a system’s needs to be able to make
the proper decisions and trade-offs.

Brian Lawrence, wearing the hat of author, ar-
gues in his Counterpoint essay that a project’s de-
signers should own and manage the requirements
or they won’t understand enough about the re-
quirements to design a good implementation.
Here, the term “good” means all desired proper-
ties, including correctness, completeness, effi-
ciency, and so on.

We, wearing the hat of guest editors, take a rab-
binical point of view. Both Carl and Brian are right
for precisely the reasons they state. A specification
owned and written by someone else is just as bor-
ing to users as it is to designers. Both will say, “Do I
have to read all this? Let’s just get on with it.”

Users must know the requirements specification
intimately to do their job: to make “need” and

“want” decisions and to validate the specification.
Designers must know the specification intimately
to do their job: to design an implementation for it.
Neither group can do its job without owning, man-
aging, and participating fully in the writing of the
specification.

We hope you enjoy this issue. ❖

REFERENCES
1. F.P. Brooks Jr., “No Silver Bullet,” The Mythical Man-Month:

Essays on Software Engineering (second ed.), Addison Wesley
Longman, Reading, Mass., 1995, pp. 179-203.

2. A. Davis and P. Hsia, “Giving Voice to Requirements
Engineering,” IEEE Software, Mar. 1994, pp. 12-16.

3. Pulling Together: Proc. 19th Int’l Conf. Software Eng. (ICSE ’97),
ACM Press, New York, 1997, pp. 17-23.

4. Proc. Third Int’l Conf. Requirements Eng. (ICRE ’98), IEEE
Computer Soc. Press, Los Alamitos, Calif., to be published in
Apr. 1998.

5. J. Siddiqi and M.C. Shekaran, “Requirements Engineering: The
Emerging Wisdom,” IEEE Software, Mar. 1996, pp. 15-19.

Daniel M. Berry has been a computer sci-
ence professor at Technion since 1987.
Before that he taught for 15 years at the
University of California, Los Angeles.
From 1990 until 1994, he worked for half
of each year at the Software Engineering
Institute at Carnegie Mellon University,
where he helped build CMU's Master of

Software Engineering program. Berry’s current research inter-
ests are software engineering in general, and document pro-
cessing and requirements engineering in particular. He is a
member of the IEEE Computer Society and ACM.

Berry received a PhD in computer science from Brown
University.

Brian Lawrence is a principal at Coyote
Valley Software Consulting, where he
consults on software requirements prac-
tices. He is also currently an instructor at
the University of California, Santa Cruz
Extension in software engineering. He is
a member of the IEEE Computer Society
and ACM.

Lawrence received a BA in psychology from The College
of William and Mary and an MS in computer science from
Virginia Commonwealth University.

About the Authors

Address questions about this article to Berry at dberry@cs.
technion.ac.il or to Lawrence at lawrence@acm.org.

.

