The Safety Requirements Engineering Dilemma

Daniel M. Berry
Computer Science, Technion, Haifa 32000, Israel (dberry@cs.technion.ac.il)

Abstract

A key idea followed in the software and system safety
community is that an identified hazard is best dealt with
by changing the requirements of the system so that the
hazard does not even occur. This modus operandi creates
a serious dilemma. The hazard identification, that is
needed in order to know what hazards to avoid, is best
done after the code has been written, because only then
are the potential effects of any particular stimulus, event,
etc. deducible. However, if the response to the identified
hazard is to change the requirements, then this require-
ments change will happen only after the code is written.
Such changes are both expensive and dangerous. So, a
means to identify all hazards at requirements analysis
timeis needed.

Safety

As stated by Modugno et al, “A safe system is one
that is free from accidents or unacceptable losses.” [5] An
accident is an undesired and unplanned, but not neces-
sarily unexpected, event that results in, at least, a speci-
fied level of loss [3]. A lossis damage to or destruction
of property or injury to or death of aliving being, particu-
larly a human being. Any system operates in an environ-
ment. A hazard in a system is a state or condition of the
system that can, in the presence of a stimulus from the
environment, lead to an accident or |oss.

Hazard | dentification

A key part of a demonstration of a system to be safe
is the identification of hazards and an analysis of what to
do about the hazard. Choices for a hazard are to 1) elim-
inate it, i.e., make it impossible, 2) reduce the likelihood
of its occurrence, or 3) mitigate its effects. In some cases,
the cause of a hazard can be identified, and then it can be
controlled or even eliminated.

As with other kinds of errorsin a system, it isimpos-
sible to predict in advance of deployment and use of the
system, all possible causes of al possible hazards. Thus,

it is necessary to gather as much information as possible
about the behavior of the system under construction, and
to hope that this information allows detection of the
causes of al hazards before they lead to accidents.

A similar situation exists with system security.
Indeed, a system is said to be secure if it is free of unac-
ceptable security breaches, i.e., leakage of sensitive infor-
mation to inappropriate recipients, or destruction or
change of information by unauthorized updaters. The dif-
ficulty of identifying security threatsis the same as that of
identifying safety hazards. There is a whole repertoire of
techniques for identifying and analyzing security threats,
and these are very similar in flavor to the techniques used
for identifying and analyzing safety hazards.

Hazard Elimination

The preferred approach to dealing with an identified
safety hazard is to change the system’s requirements so
that the hazard is entirely avoided, i.e., to eliminate the
hazard. For example, if inputting a non-negative value
greater than or equal to 100 will cause a tank to explode,
then better than having the system accept any input and
check that it is greater than or equal to zero and less than
100, delivering an error message if it is not, is having a
user interface that precludes any value outside the legiti-
mate range from being input in the first place, e.g., with a
dlider bounded by zero at the bottom and 99 at the top, or
with an input window that isonly two digits wide.

In the security domain also, changing requirements to
eliminate security threats rather than checking for errors
at run time isthe preferred approach.

Hazard elimination requires that hazards be identified
as early as possible, i.e., during requirements analysis so
that the requirements that avoid specific hazards are
known by the time the requirements are being specified.

Hazard I dentification Techniques

When one reads the literature on software based sys-
tem safety, eg., Leveson's book [3] and other papers
[5,4], he or she is struck by the level of detail of the



models that must be used to do the hazard analysis. Even
though these models are called blackbox models because
they do not show so-called implementation details, they
do show for each stimulus from the environment thought
to be relevant, a transition in the state model from any
state. This state model is intended to capture the user’s
mental model of the external behavior of the system [4].

Note that only the stimuli thought to be relevant are
handled by the blackbox model. One reason for modify-
ing the model is the discovery of another stimulus or
another group of simultaneous stimuli, possibly previ-
ously known, that is relevant to the safety of the system.

Such detail is necessary to be able to carry out any
useful state machine hazard analysis (SMHA), whether by
forward search from possible initial states and stimuli or
by backward search from known hazards [5].

The software-based system safety community has
come to regard such blackbox models as requirement
level models simply because it has no choice. Without
this level of detail, the hazard conditions are simply
invisible, having been abstracted away into states and
transitions in which the conditions and sequences of
events that lead to accidents are not expressible. In a nor-
mal non-safety-critical system, such a model would be
called ahigh-level design or simply a design. Put in terms
of Leveson's intent specifications [4], most would con-
sider as requirements only Section 1, System Purpose;
most would consider as design Sections 2, Design Princi-
ples, 3, Blackbox Behavior, and 4, Physical and Logical
Function; and most would consider as implementation
documentation Section 5, Physical Realization.

Moreover, when SMHA fails to identify a hazard that
rears its ugly head later, it can be that the underlying
blackbox model is just not detailed enough to expose the
hazard condition. Indeed, as deployed systems are dis-
covered to present hazards that were not anticipated, a
revision of the blackbox model isin order.

The same observation holds for other hazard identifi-
cation techniques including forward simulation, HAZards
OPerability analysis (HAZOP), or deviation analysis, and
others described in detail in [3].

Dilemma

Hazard elimination is best done early in the lifecycle,
early enough to affect the requirements specification. The
hazard identification that is needed in order to know what
hazards to avoid is best done after the code has been writ-
ten, because only then are the potential effects of any par-
ticular stimulus, event, etc. deducible. However, if the
response to the identified hazard is to change the require-
ments, then these requirements change will happen only
after the code is written. Such changes are both expensive

and dangerous. They are expensive because they mean
throwing out previously written code, and they are
dangerous because attempting to change only the affected
code runs the risk of unidentified ripple effects and flakier
software. Neither isvery palatable. Therefore, the need is
for a means to identify all hazards at requirements analy-
sistime.

One Approach Out of Dilemma

van Lamsweerde and Letier (vLL) [7] identify the
dilemma and try to identify unexpected agent behavior at
specification time and at the goal level without having to
wait until design or implementation time and without hav-
ing to delve into design and code details.

Once a goal-driven requirements elaboration has
been carried out to yield a forma specification in the
KAOS language, they use formal methods to identify obs-
tacles to requirements satisfaction from the specifications
of goals and domain properties and to modify goals, re-
quirements, and assumptions to overcome or mitigate the
identified obstacles. It should be clear that this terminol-
ogy captures exactly the desired way of dealing with safe-
ty problems described above.

Obstacle identification itself consists in finding some
assertion for each goa and assumption, i.e., an obstacle,
that may prevent their satisfaction, verifying that the can-
didate obstacle is consistent with the domain theory, and
determining if this candidate obstacle is satisfiable by try-
ing to find a feasible negating scenario.

A goa can be categorized by the type of require-
ments it derives from the the agents involved. For each
such goal category, specific obstacle categories may be
defined, e.g., starvation obstacles for satisfaction goals,
hazard obstacles for safety goals, misinformation and for-
getting obstacles for informing goals, threat obstacles for
security goals, etc. Knowledge of the category of a goal
may drive a search for obstacles in the corresponding obs-
tacle category, Thus, vLL too have observed the similar-
ity of methods for dealing with safety and security, and
with other problems as well.

The key idea of their paper is that obstacle
identification needs to be done as early as possible in the
system lifecycle, and as early as possible during require-
ments analysis, that is, at the time that goals are being
identified. The earlier such identification is done, the
more freedom is obtained in dealing with the obstacles, at
best by changing goals so that the obstacle does not even
happen. Clearly, goals here correspond to Leveson et al’'s
intents, obstacles correspond to hazards, and derived
objects and operations correspond to the blackbox model.
Indeed, vLL confirm this correspondence when they sug-
gest that goals might provide a precise entry point for



analysis, e.g., constructing the fault tree starting from
negated goals. Clearly, the steps to formally derive obsta-
cles from goals are a formal realization of blackbox
modeling and hazard analysis, which are normally done
manually, albeit systematically, and with tools when
applicable. In any cases, there is no escaping deriving
more details than are normally considered requirements.

Another Approach Out of Dilemma

Anderson, de Lemos, and Saeed (AdLS) observe that
a major problem facing developers of safety-critical
software-based systems is the major rework of designs
and implementations caused by discovery of safety prob-
lems too late in the system’s lifecycle [6,2,1]. Their
solution to this problem is to address the system-context
and failure-behavior safety concerns during the require-
ments phase of the lifecycle. The requirements phases is
the most efficient time to do so, to insure that safety prob-
lems do not survive through to deployment.

The AdLS method for arriving at requirements for
safety-critical systems consists in modeling the system
and its environment, iterative simultaneous requirements
and safety analyses, and documentation of linkages
identified between artifacts produced by these analyses
with a Safety Specification Graph (SSG). In any iteration,
analysis of the requirements specifications yields safety
specifications. The analysis of these safety specifications
assesses the risks associated with them. If the risks are
unacceptable, the safety specifications are modified, lead-
ing to restrictions on the requirements specifications. If
any of these restrictions compromise the mission, the re-
guirements specifications must be changed also; the cycle
continues to convergence. These analyses are both quali-
tative, to identify the hazards, and quantitative, to calcu-
late the probabilities and thus the risks, and these are basi-
cally the same analyses as described above, but adapted to
the specific notations suggested by AdLS.

The feasihility of the AdLS approach has been
demonstrated by a good number of case studies in the do-
mains of railway systems, chemical batch processing, and
avionics systems.

Workshop Case Study

The meeting scheduler case study at first glance
seems not to be subject to the ideas of this position paper.
Indeed, there appear to be no safety and security
ramifications of the problem as it is described in the web
page,

http: /Aww.eecs.uic.edu/ buy/case.html .
However, this may even be an example of the problem. It
might be that when a concrete design is given, one can

see some possible security threats, e.g., if the meeting
scheduler would have access to users' files to update their
private calendars.

Conclusions

To conclude, it might be that the only solution is to
identify requirements, to carry out a design sufficient to
get a blackbox description of the system, to identify and
analyze hazards, and then to begin the lifecycle again
with changed requirements. It may be necessary to con-
tinue to do so for each kind of system that is not yet so
completely and thoroughly understood that it can be
bought safe off the shelf or routinely put together out of
pieces that can be bought safe off the shelf.

Then, it becomes necessary to accept that designs are
an integral part of requirement specification in some do-
mains or that at least that it may be essential to carry out
enough of a design to see the full implications of the re-
quirements so far, in order to see what the requirements
should be. It is necessary to accept that such designs, like
prototypes built for requirements exploration, understand-
ing, and validation, are going to be thrown away or at
least not used fully or without change.

References

[1] Anderson, T., de Lemos, R., and Saeed, A., “Analysis of
Safety Requirements for Process Control Systems,” in
Predictably Dependable Computing Systems, ed. B. Ran-
dell, J.C. Laprie, B. Littlewood, H. Kopetz, Springer, Ber-
lin (1995).

[2] de Lemos, R., Saeed, A., and Anderson, T., “On the Safety
Analysis of Requirements Specifications,” pp. 217-227 in
Proceedings of the Thirteenth International Conference on
Safety, Reliability, and Security (SAFECOMP '94), ed. V.
Maggioli, Springer (1994).

[3] Leveson, N.G., Safeware: System Safety and Computers,
Addison Wesley, Reading, MA (1995).

[4] Leveson, N.G., “Intent Specifications: An Approach to
Building Human-Centered Specifications,” Technical
Report, Computer Science and Engineering, University of
Washington, Seattle, WA (1997).

[5] Modugno, F., Leveson, N.G., Reese, J.D., Partridge, K.,
and Sandys, S.D., “Integrated Safety Analysis of Require-
ments Specifications,” Requirements Engineering 2(2),
p.65-78 (1997).

[6] Saeed, A., de Lemos, R., and Anderson, T., “Robust Re-
quirements Specifications for Safety-Critical Systems,” pp.
219-229 in Proceedings of the Twelfth International
Conference on Safety, Reliability, and Security
(SAFECOMP '93), ed. J. Géski, Springer (1993).

[7] van Lamsweerde, A. and Letier, E., “Integrating Obstacles
in Goa-Driven Requirements Engineering,” Technical
Report, Catholic University of Louvain, Department of
Software Engineering, Louvain (1997).



