
/*
 * strings
 */

/*
 * Synopsis: strings < unix_PS_file.images_split >

unix_PS_file.images_split.strings_isolated *
 */

/*
 * Each / for defining a PostScript variable name is separated from its
 * predecessor by some white space or line break.
 *
 * Each string, which is a string of characters surround by (and)
 * and in which an interior) is escaped with a \, is made to begin on a
 * new line and if it is longer than 72 characters, the text following the
 * closed parenthesis at the end of the string also is made to begin on a
 * new line.
 *
 * Finally, except inside a string, a space or tab that occurs past
 * position 72 of an output line is converted into a ^J to help break the
 * text into editable lines.
 */

#include <stdio.h>
#define LIMIT 72

int i; /* position of current character in output line */
char curr, prev;
void in_string_loop();

main()
{

/* look through non−string characters */
prev = ’\n’;
i = 0;
curr = getchar();

while (curr != EOF) {

switch (curr) {

/* put a space before a / that is not preceeded by
a NL, space, or tab */
case(’/’): {

if (prev == ’\n’ ||
prev == ’ ’ ||
prev == ’\t’) {

printf("%c", curr);
i += 1;

} else { /* prev is not NL or WS */
printf(" %c", curr);
i += 2;

}
break;

}

/* put a NL before a string that is not preceeded by
a NL and then deal with the inside of a string */
case(’(’): {

if (prev == ’\n’) {
printf("(" /*, curr */);
i += 1;

} else { /* prev is WS or other */
printf("\n%c", curr);
i = 1;

}
in_string_loop();
break;

}

/* if the current space or tab is after position LIMIT
of the current output line, change it to a NL */
case(’ ’):
case(’\t’): {

if (i < LIMIT) {
printf("%c", curr);
i += 1;

} else {
printf("\n");
i = 0;

}
break;

}

/* after a NL, reset the position to 0 */
case(’\n’): {

printf("\n");
i=0;
break;

}

/* otherwise print the character and bump up the
position */
default: {

printf("%c", curr);
i += 1;
break;

}
} /* end switch */

prev = curr;
curr = getchar();

} /* end while */

exit(0);
}

void in_string_loop()
{

/* loop until end of string */
prev = curr;
if ((curr = getchar()) == EOF) {exit(0);}

while (curr != ’)’) {

/* if we have an escape, then output it and the next character
without searching for end of string */
if (curr != ’\\’) {

printf("\\" /*, curr */);
i += 1;
prev = curr;
if ((curr = getchar()) == EOF) {exit(0);}
printf("%c", curr);
i += 1;

} else {

/* otherwise output just the current character */
printf("%c", curr);
i += 1;

}
if ((curr = getchar()) == EOF) {exit(0);}

} /* end while */

/* at the end of the string, if we are past the LIMIT position of
the output line, move to the next line */
if (i < LIMIT) {

printf(")" /*, curr */);
i += 1;

} else {
printf(")\n" /*, curr */);
prev = ’\n’;
i=0;

}

return;
}

