
Myths and Realities in
Software Development

Daniel M. Berry

with material from F.P. Brooks’s Mythical Man
Month

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 1

I was going to say:

“Myths and Truths in Software Development”

But that would be putting too much strength
to what I say.

For today’s realities may turn out to be
tomorrow’s myths!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 2

Truths?

“There are no universal truths except, of
course, this one”

— David Thewlis

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 3

Predictions about Computers

“Computers in the future may weigh no more
than 1.5 tons.”

— Popular Mechanics, 1949

“I think there is a world market for maybe five
computers.”

— Thomas Watson, Chair IBM, 1943.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 4

“I have travelled the length and breadth of this
country and talked with the best people, and I
can assure you that data processings is a fad
that won’t last out the year.”

— Editor of business books
for Prentice-Hall, 1957.

“But what ... is it good for?”
— Engineer at the Advanced
Computing Systems Division,
IBM, 1968, commenting on the
microchip.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 5

“There is no reason anyone would want a
computer in their [sic] home.”

— Ken Olson, president,
Chair and founder, DEC.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 6

Outline

Myths concerning a variety of topics:
Management Issues
Lifecycle Models
Lifecycle Steps

Conception
Requirements
Design
Programming

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 7

Testing
Maintenance
Documentation

Theory

And then, some truths!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 8

Management Issues

Person Month
Divisibility of Tasks
Human Capital
Team Sizes
Individual Differences
Scheduling
Tools and Methods

CASE Tools
No Silver Bullet
Rationality of Methods
Faking It

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 9

Project Success/Failure
Technical Factors
People Factors
Sociological Factors

Project Killers
Limitations
CMM
Processes
Risk Management

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 10

Myth:

Person Month:

a famous unit of measure of work (used to be
called “man month”)

The name of the unit is itself the myth,
because it implies the following graph:

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 11

Time

Pe
rs

on
s

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 12

No!

Prime counter-example:

If it takes one couple 9 months to make a
baby, then in how many months can 3 couples
make a baby?

Nu?!?!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 13

Three kinds of tasks

g completely dividable
g partially dividable
g not dividable

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 14

Completely Dividable Tasks

Laying a brick wall is completely dividable
after bottom row has been laid.

You can throw as many brick layers as you
want to the job.

Each works on an independent part.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 15

The shape of the bricks and the laying pattern
guarantee that the independent sections will
interface properly when they meet.

There is no need for interface discussions.

In essence, the bottom row is a complete
interface specification for all independent
parts, no matter how many there are.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 16

For a job requiring P PMs, N people reduces
the elapsed time of the job to close to P/N
months.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 17

Not Dividable Tasks

Some tasks take a certain minimum amount of
time, no matter how many people you throw at
the task.

Examples,

Making baby
Baking a cake
Growing a tree
Learning a domain

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 18

A job requiring T months still requires (at
least) T months even when you have N people
trying to help.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 19

Partially Dividable Tasks

Most software engineering tasks are only
partially dividable, because they require
communication among the people over whom
the tasks are distributed,

especially when interfaces must be worked
out between different people’s work or when
everybody’s viewpoint must be understood
before proceeding with individual work.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 20

In any such situation, the problem is the
amount of communication needed.

number of persons, lines of communication

5,104,63,32,11,0

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 21

The number of lines of communication grows
as the square of the number of people.

“Too many cooks spoil the pie.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 22

Sobering Reality:

“Adding more people to a late project makes it
even later!”

says Fred Brooks, leader of the IBM project to
build OS/360.

The time spent catching new people up and in
new lines of communication is much greater
than the time the new people can add to the
work.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 23

So, for a job requiring P PMs, N people
require more than P/N months, how much
more depends on the communication needs

and on N 2.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 24

Human Capital, Unmasked

Tom DeMarco [in NYT 14 Apr. ’96] tells the
following story:

Imagine, you’re the manager of crack, highly
effective, highly motivated, well-knit 5-person
team that is humming smoothly on schedule
on this important, make-or-break project that
simply must be done on time.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 25

You learn, to your dismay, that one of the 5,
Louise will be leaving at the end of the month.

Wotta disaster... you know you’re in deep
s__t.

So you ask personnel to send you another
Louise.

Personnel tells you that Louises are, sadly,
out of stock, and offers you a Ralph, who is no
slouch, with as much experience and skill as
Louise.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 26

So the deal is done; Louise is out on the 31st
and Ralph is in on the 1st;

From accounting’s point of view, nothing has
changed; Ralph’s salary, workload, expertise,
etc is the same as Louise’s; so you’re trading
like for like, with no net change! What’s the
problem?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 27

g Louise spends a majority of her remaining
time writing up what Ralph is supposed to
know, contributing less to the project in
her last days

or

g Ralph starts earlier over accounting’s loud
complaints and Louise shows Ralph the
ropes, contributing even less to the project
while Ralph adds more costs to the project.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 28

In either case, on 1st, Ralph comes on the job
alone, spends first day figuring out who is
who, finding the toilets, the coffee room, and
supplies, and reconfiguring the workstation
left by Louise.

His contribution to the project? Zilch, Nada!

The second and subsequent days he starts
poring over Louise’s notes.

He still adds nothing to the project.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 29

Every now and then, he has a question and
goes to ask other team members, who find
themselves interrupted from doing their 25%
greater workload (since they have to take up
slack left by Louise and not yet picked up by
Ralph). Ralph’s contribution? not even 0, it is
negative; he keeps others from working to
their capacity.

Ralph continues to be a negative for quite a
while and slowly begins to get up to speed.

The graph below shows the situation.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 30

Cost of Getting Up to Speed

LOST
PRODUCTION

writing for
Ralph

RALPH

TIME-
+

P
R

O
D

U
C

T
IV

IT
Y

LOUISE

Ralph starts early

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 31

In a typical large project, it can take up to two
years to get up to speed. In this case, the lost
production (integral above the curve) is about
a person year of work.

That is, each time a new engineer is hired, a
full year’s salary has to be invested in that
engineer before the engineer begins to pay off.

Perhaps people should be recognized as an
investment and not an expense.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 32

Myth:

Big teams are better!

We have a staff of thousands working on your
program!!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 33

Reality:

Big teams are great for 43-person Squamish,
symphonies, epic movies, etc., but not for
making pies and software!

“Too many cooks spoil the pie.”

Recall that the number of lines of
communication grows as the square of the
team size.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 34

Speaking of Fred Brooks and OS/360, folklore
has it that OS/360 was built in the IBM Army of
Ants approach by a team of consisting of
Brooks and 1000 nameless people, one of
whom is buried in the tomb of the unknown
programmer at the IBM corporate cemetery in
Poughkeepsie, New York.

The first UNIX system was built by a team of
three people, Dennis Ritchie, Ken Thompson,
and Brian Kernighan, and none was the leader
per se.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 35

g Which operating system is in voluntary use
all over the world?

g Which operating system is used as a basis
for many others?

g Which operating system is dissected as an
object of study in text books and courses
about operating systems?

g Which operating system was started first?
Which arrived first at a relatively stable
state in which new releases were for
enhancements rather than bug fixes?

Need I say any more?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 36

Various studies indicate that the optimal team
size is between 2 and 5, with 3 being the
mode.

Well, certainly a team with fewer than 2
members is not a team!

With more than 5 team members, team
management begins to dominate the work;
i.e., each additional person costs more in team
management time than he or she adds to
potential work time.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 37

Myth:

All programmers are the same.

All experienced programmers are equally
skilled.

This job requires 5 person years; I’ve got one
year to do it; so give me 5 programmers.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 38

Reality:

Sackman, Erickson, and Grant’s 1965
experiment to show that interactive
programming was more effective than batch
programming failed to produce significant
results because the effect of the independent
variable (use of interactive vs. batch
submission of the job) was drowned out by
individual differences in programmers of
equal experience.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 39

One experienced programmer was found to be
28 times more effective than another equally
experienced programmer!

g If you have 5 of the first kind, you’ll finish.
g If you have 5 of the second kind, you won’t!
g In fact, you might even be able to finish in

time with only one of the first kind; if you
can arrange the teams so that he or she
will not be slowed down by having to
communicate with other team members.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 40

The idea of Chief Programmer Teams is to
build a small team around one of these super
programmers

g to allow the super programmer to do his or
her stuff with a minimum of distraction by
drudgery, which is done by the other team
members, and

g to limit communication to a star
configuration with the chief in the center,
for which the growth in number of lines of
communication is linear in the growth of
team size.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 41

Myth:

The program is 95% done!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 42

Reality:

Actual data from Jim Tomayko:

0
10
20
30
40
50
60
70
80
90

100

0 25 50 75 100

Percentage of Total Project Time

E
st

im
at

ed
 P

er
ce

n
t

C
o

m
p

le
te

10

30

50

75

95
98

95

98
99

100

9890

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 43

Do you believe “95% done” any more?

Programmers are among the most optimistic
people in the world.

They continue to believe in their ability to
solve problems instantly even in the face of
continued, repeated evidence to the contrary.

Each is even more optimistic about
him/herself than anyone else.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 44

Myth:

CASE tools will solve all your problems

Just look at all the advertisements in the trade
magazines promising 1000% improvement in
software productivity if you buy the advertised
CASE tools!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 45

Reality:

Fred Brooks says:

“There’s no silver bullet!”

g Essence
g Accidents

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 46

“No Silver Bullet” (NSB)

g The essence of building software is
devising the conceptual construct itself.

g This is very hard.

- arbitrary complexity
- conformity to given world
- changes and changeability
- invisibility

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 47

g Most productivity gain came from fixing
accidents

- really awkward assembly language
- severe time and space constraints
- long batch turnaround time
- clerical tasks for which tools are helpful

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 48

g However, the essence has resisted attack!

We have the same sense of being
overwhelmed by the immensity of the
problem and the seemingly endless
details to take care of,

and we produce the same brain-
damaged software that makes the same
stupid mistakes

as 30 years ago!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 49

More Reality:

Even the best tool will not make a good
programmer out of a bad one.

In fact, a bad programmer will use good tools
to turn out worse programs more quickly than
ever before.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 50

The same can be said for software
development methods:

Here is an example of a so-called structured,
goto-less program.

for i from 1 to 4 do
case i in

1: s1,
2: s2,
3: s3,
4: s4

esac
od

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 51

This is, of course, equivalent to

s1; s2; s3; s4

The so-called structured program is pretty
disgusting if you ask me.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 52

A good tool is one that automates clerical
portions of tasks that you, a good
programmer, do in the course of good
programming.

It helps avoid stupid errors.

A stupid error is an algorithmically avoidable
error!

Mainly, you are stupid if you let an error that a
program can detect go undetected!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 53

Example of good CASE tool: Stu Feldman’s

make

relieves programmers of having to keep track
of which modules depend on what others and
of which ones have been updated since last
compiling and linking the full program so that
no more modules than need to be compiled
again are compiled again.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 54

A bunch of myths:

Programmers would like to think of
themselves as rational.

Methodologists would like to believe that all
programmers can be taught to be rational.

All would like to believe that rational
programmers write good software!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 55

Methodologists write papers and books
describing how to use their methods to write
code rationally.

All of these papers and books have examples
of nice, clear step-by-step rational
developments of code from requirements.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 56

Reality

Funny thing is that these authors probably
revised their examples as much of the rest of
us!

I know; I have written such a monograph.

The same applies to lecturers on software
engineering methods.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 57

Myth:

Methodologists would have you believe that
good programmers actually follow some
variation of the waterfall lifecycle or some
such.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 58

Closer to Reality:

Realization

Operation

Integration

Design

Specifications

Requirements

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 59

Real Reality:

The hurricane model

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 60

In both you get wet, but a hurricane is much
wetter and messier.

But in the eye of the hurricane, there is a false
sense of calm.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 61

Not Rational

OK, OK, so process is not rational. Nu?

But, there is value to describing the
development of software as if it were rational,
i.e., of faking a rational process.

“I know that I’ve been fakin’ it!”
— Paul Simon

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 62

Faking It

David Parnas and Paul Clements suggest
writing the documentation as if the
development were rational.

Be prepared to modify it, when the
development changes direction as the
developers get too wet in the storm.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 63

Myths:

The most important factors determining the
success of a software development project are
its

1. programming language and
2. tools.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 64

Reality

All wrong, despite what language and tool
designers would have you believe.

For one thing, the real influence of the listed
items is in reverse order.

1. tools and
2. programming language.

A good tool can make even assembly
language appear object oriented!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 65

So then what are the important influences?

Certainly, more important than these is the
competence of the team members.

Recall the discussion on individual
differences earlier and how they completely
washed out the technological difference in the
programming environment.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 66

A good programmer can write good code in
any language, including assembly or Pascal
and can fake the effect of any tool with a few
good tricks and a flexible programming
environment!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 67

However, the most important factor
determining a project’s success or failure is
something else entirely.

Tom DeMarco says,

“The very best technology never has as much
impact as girlfriend or boyfriend trouble.”

“... the project’s sociology will be more
important to eventual success and failure than
the project’s technology.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 68

Bill Curtis considers

“techies [themselves to be the key] non-
technological factors in software
engineering,” even more important than
technological factors.

In other words, the sociology and politics of
the team will make or break the team.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 69

Curtis, Krasner, and Isco found that:

“Software development tools and practices
had disappointingly small effects in earlier
studies, probably because they did not
improve the most troublesome processes in
software development.”

“Processes” refers to the management of the
steps and procedures of the development.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 70

Humphrey, Kitson, and Kasse report that:

“For low maturity organizations, technical
issues almost never appear at the top of key
priority issue lists, ... not because technical
issues are not important but simply because
so many management problems must be
handled first.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 71

Fred Brooks says it too

“People are Everything”

g The issues are managerial, not technical.
g Every study shows the crucial importance

of people.
g Projects don’t move; only goals move!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 72

Also, Brooks, in saying that there is no silver
bullet, concluded:

“The central question in how to improve the
software art centers, as it always has, on
people.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 73

Barry Boehm, who has written the book on
software cost estimation says:

“Personnel attributes and human relations
activities provides by far the largest source of
opportunity for improving software
productivity.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 74

Boehm’s determination of relative contribution
of various factors:

1.20

1.23
1.32
1.34
1.49
1.49
1.51
1.56
1.57
1.66
1.87
2.36
4.18

1.23
Language Experience
Schedule Constraint
Database Size
Turnaround Time

Software Tools
Virtual Machine Volatility

Modern Programming Practices
Storage Constraint
Application Experience

Product Complexity
Personnel/Team Capability

Virtual Machine Experience

Timing Constraint
Required Reliability

S
o

ft
w

ar
e

C
o

st
 D

ri
ve

r
A

tt
ri

b
u

te

0 1 2 3 4

Relative Effect

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 75

Watts Humphrey, who wrote the book on
software processes says:

While technology offers considerable potential
for improvement, in many organizations the
software process is sufficiently confused and
incoherent that non-technological factors
impede the effective application of
technology.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 76

In other words, ...

A team of highly competent programmers who
are also highly territorial, egotistical
politicians will fail while a team of equally
competent programmers, who are also
egoless, cooperative, team players will
succeed.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 77

Myth:

Technology is the most important factor in
project success (or failure).

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 78

Reality:

Joseph Blackburn, Gary Scudder, and Luk Van
Wassenhove’s survey study of improving
speed and productivity of software
development shows that having talented
people is far more important than having good
technology.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 79

Given a choice between investing in talented,
expensive people and good, expensive tools,
go for the talented people even though they
are more expensive than the expensive
technology.

They say that there is a silver bullet, the
creative, talented, super programmer.

“Faster than a speeding silver bullet! Look up
in the sky! Is it a bird? Is it a plane? No, it’s
super programmer!”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 80

Project Killers

Tom DeMarco, in his ICRE ’96 Keynote, lists
but a few:

g The user hates me.
g One of the stakeholders is willing to come

to the table only if a key precondition is
met.

g The 3 principal stakeholders are outraged
that a 4th stakeholder has been identified
and invited to participate

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 81

g One of the stakeholders has publically
declared his distrust of one of the others

g One of the key participants stands to be
substantially disenfranchised by
installation of the new system.

g People don’t feel safe here.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 82

Killer Neutralizing Skills

Tom DeMarco lists only a few:

g interdependent decision making
g conflict resolution
g negotiation
g ability to apply Win-Win

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 83

Win-Win (Theory W)

Boehm: The Win-Win approach involves the
following basic steps performed by
stakeholders and an architect-facilitator:

1. Identify stakeholders’ win conditions.
2. Identify issues involving win condition

conflicts.
3. Formulate and evaluate options addressing

the issues.
4. Formulate, vote on, and adopt agreements

on mutually satisfactory options.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 84

Among these skills, there is nothing very
technical (except knowledge about options)!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 85

Myth:

Next year, the machine will be big enough and
fast enough that we won’t have these
limitations.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 86

Reality:

Our ambitions, fueled by a realization of
increased computing power (speed, space,
and bandwidth) always exceeds the limits, not
only of the computing power, but of our
mental capability to deal with them as routine.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 87

Barry Boehm said back in 1984, “There is
never enough time or money to cover all the
good features we would like to put into our
software products. And even in these days of
cheap hardware and virtual memory, our more
significant software products must always
operate within a world of limited computer
power and main memory.”

He could have said it this year too!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 88

Myth:

We have a 4 rating in the CMM, so you know
that we are a good software development
company.

CMM = Capability Maturity Model [Paulk et al]

A model and a measure of the maturity of a
software development organization’s software
development process.

Scale of 1 through 5 with 5 being best.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 89

iii
5 Technology Innovation

Optimizing Continuous Improvementiii
4 Measurement of Process

Managed Process & Product Qualityiii
3 Continual Reviews

Defined Engineering Processiii
2 Planned Lifecycle

Repeatable Project Managementiii
1 Chaos

Initial Heroesiiicc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 90

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5 Controlled

Optimizing Processiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4 Measured

Managed Processiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3 Defined

Defined Processiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2 Basically Managed

Repeatable Processiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 Ad hoc

Initial Processiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 91

Predictions According to CMM

For 200K-line business data processing
product:

CMM Durat’n Effort Faults Faults $ Cost
Level Months PMs Detect. Deliver. Devel.iii

1 29.8 593.5 1348 61 5.4M
2 18.5 143.0 328 12 1.3M
3 15.2 79.2 182 7 .73M
4 12.5 42.8 97 5 .39M
5 9.0 16.0 37 1 .15M

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 92

But ...

That is only a prediction.

To date, to my knowledge, there is no
experimental verification of the prediction.

However, for better or worse, a lot of people
believe in the prediction.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 93

Reality

CMM is a good model in that if an organization
is good then it will score high.

The problem is that the converse, “if an
organization scores high then it is good”,
does not necessarily hold!

Unfortunately, the DoD and some MoDs are
using CMM rating as a rating of goodness of
potential contractors.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 94

Analogy:

Many parents say:

“If you have a fever, you may stay home from
school.
If you don’t have a fever, you may go on the
camping trip.”

While sickness does normally lead to a high
fever, fever and sickness are not logically
equivalent.

Many children learn to manipulate body
temperature to achieve nefarious goals.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 95

Paradoxes about Processes

Tom DeMarco in his ICSE 18 (’96) Keynote
said that our efforts to standardize and
improve process have had some positive
effect, ...

but not much!

In particular:

The organizations that have invested most
heavily in methodology and process have
not been the major beneficiaries.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 96

Paradox 1

Every time you improve process, work
becomes harder.

This is a corollary of Brook’s NSB thesis that
there is an irreducible core of work, not
subject to improvement and not mechanizable.

So process does not help with these and just
adds to the work.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 97

We end up focusing more and more on the
irreducible core as more and more of the rest
gets automated, and what’s left is thus more
and more uniformly hard.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 98

Paradox 2

Focus on process tends to make an
organization risk averse.

And who are the big winners?

The risk takers or the safe ones?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 99

It’s the old

Armor vs. Mobility

argument for the military.

Armor = process and there is no room for
mobility.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 100

I am told that the process at Microsoft stinks,
but they have the money to spend on being
mobile and to hell with the risks! They can
afford to lose a million here, a million there on
bad projects.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 101

Paradox 3

The problems of software re-use have been
utterly intractable, but also our greatest
success.

Just look at the great success of programming
libraries!

But who can predict at planning time, which
libraries will sell?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 102

Paradox 4

We adapt to fast change but not to slow
change.

So, we adapted well to microcomputers, 4th
generation languages, WWW, etc., but not well
to the progressive dinosaurization of data
processing.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 103

Paradox 5

Riskier projects are safer, in that you end up
keeping your job!

Because the results will have a much higher
value.

The highest risk projects have the biggest
payoff.

And if it fails, so what? You can always find a
good job!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 104

Myth:

The new Denver International Airport (the one
with the automated baggage system that was
more than a year late) is a total failure!

Stay away from DIA!

(But that makes it difficult to get to good
skiing in Colorado)

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 105

Reality

DeMarco, in his ICRE ’96 Keynote, observed
that the failure at DIA was a lack of risk
management.

They did not defend against the risk that the
software might be late.

The software was on the critical path for
opening and they simply did not provide any
other way to open without the software.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 106

So they were a year late.

But for all the delay, for all the money lost, two
years after opening, it has already recovered
the losses and is making a profit.

And it’s not a bad airport (even though I did
break my leg in the skiing I did after arriving at
DIA).

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 107

Lifecycle Models

Waterfall
Problems with Waterfall
Walkerfall
Spiral

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 108

Waterfall Model:

Realization

Operation

Integration

Design

Specifications

Requirements

Win Royce’s Waterfall Model

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 109

Brooks about Waterfall

In ICSE ’95 Keynote

Brooks says “The Waterfall Model is Wrong!”

g The hardest part of design is deciding what
to design.

g Good design takes upstream jumping at
every cascade, sometimes back more than
one step.

g Even the U.S. DoD finally knows this, to wit
Defense Science Board Study, Kaminski
Committee, June 1994.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 110

Problems with Waterfall Model

The main overall problem is that it does not
work!

No one writes software that way; no one is
able to write software that way!

People make too many mistakes along the
way and recognize that they have done so.

So we have to fake having followed the
waterfall with the documentation.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 111

The main problem, from the requirements
point of view, of the waterfall model is the
feeling it conveys of the sanctity, inviolability,
and unchangeability of the requirements.

Barry Boehm produced the following picture
at a 1988 workshop at SEI.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 112

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 113

Michael Jackson Says

In the Requirements Engineering ’94 Keynote

Two things are known about requirements:
1. They will change!
2. They will be misunderstood!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 114

The Walkerfall Model

Iteration
Beta General

Release Release
Iteration Iteration Iteration IterationPrototyping

Inception Elaboration Construction Transition
Development Lifecycle

Architecture Useable DeploymentFeasibility

Iterations Iterations Iterations Iterations

The Lifecycle Macroprocess

Walker Royce’s Waterfall Model, Part I

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 115

Iteration
Beta General

Release Release
Iteration Iteration Iteration IterationPrototyping

Inception Elaboration Construction Transition

Relative Effort by Activity

Management 15%

Reqts. capture 10%

Environment 5%

Analysis, design 15%

Implementation 30%

Testing 20%

Deployment 5%

Total Effort

Walker Royce’s Waterfall Model, Part II

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 116

Spiral Model
Determine objectives, alternatives,

next level product

Develop, verify

Benchmarks

Models,

Simulations,

Risk analysis

identify, resolve risks

Evaluate alternatives;

Plan next phase

constraints

Barry Boehm’s Spiral Model

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 117

The spiral model solves the problem of the
inappropriate sanctity of the requirements
simply because it is built around ever
changing requirements.

The requirements for each sweep of the spiral
is derived from the requirements of the
previous sweep and what was learned during
the previous sweep.

The software is grown incrementally (more on
this later).

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 118

Lifecycle Steps

Conception
Requirements
Design
Coding
Testing
Maintenance & Legacy Software
Documentation

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 119

Conception

Hurrying to Coding
Costs to Repair Errors
Crunch Mode
Annualized Delivery
Incremental Build
Make vs. Buy
Startups
Client/Server

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 120

Myth:

You people start the coding while I go see
what the customer wants.

That is, because of impending deadlines, we
gotta start working on the code before we
know exactly what the customer wants, and if
something the customer wants is a surprise,
we can always change the code later!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 121

Reality:

There is never enough time to do it right, but
there is always enough time to fix it or to do it
over.

However, it always takes more time to fix it
than to have done it right or to do it over (not
even counting the fact that you have done it
twice).

When you fix it, it is always flaky and never
quite fixed (more on this later!).

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 122

What is doing it right?

It is working with client, domain experts, and
technology experts until requirements are
understood before designing or coding.

It is getting design worked out so that all
modules are known before coding.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 123

Why?

As requirements change, so do design and
code.

As design changes, so does code (especially
as a result of interface changes!).

Code is expensive to change, but design is
cheaper to change, and requirements are even
cheaper to change!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 124

This does not mean not to prototype.

A throw-out prototype is written

g to help understand requirements,
g to get client to understand what you

understand about what they said,
g to answer questions about user interface,

algorithms, and performance.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 125

Remember: Boehm and others have shown
that the cost to repair an error goes up
dramatically as project moves towards
completion and beyond ...

In graph on the next slide, note that cost scale
is logarithmic, and

the graph itself looks exponential even on a
logarithmic scale!!! Oy!

Graph is (y) relative cost to repair bug vs.
(x) life cycle stage

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 126

Phase in which error is detected

1

2

5

10

20

50

100

R
el

at
iv

e
co

st
 to

 c
or

re
ct

 e
rr

or

Preliminary
design

Detailed
design

Code and
debug

Integrate Validate Operation

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 127

Myth:

Doing it right itself is a myth and doing it
wrong is reality.

Evidence shows that skimping on
requirements analysis, specification, and
design leads to lousy, buggy software that is
brittle and very expensive to repair and
enhance.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 128

However, doing it right takes too long in these
days in which the first to the market gets the
whole market if the software is good enough
(but not unless it is good enough!)(and who’s
to define what’s good enough except the
market itself!), and later, even better products
are doomed to failure.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 129

John Boddie’s crunch mode does work, but
you need some programmer’s equivalents of
Michael Jordan or Magic Johnson managed by
the programming manager’s equivalent of
Peter Ueberroth to pull it off.

If you have talented people, and the team
clicks just right, you can do it and you can
even learn to manage such teams.

Richard Botting has even produced a theory
showing why crunch mode works and why it
has to work!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 130

When the problems are compounded by trying
to do maintenance and new development at
the same time, both to keep your current
customers and to meet the market demands
for new features, it can be hopeless.

Steve McConnel suggests Annualized
Software Delivery

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 131

You have parallel teams,

g one maintaining the current version until
date D, and

g one aiming to release the new version on
date D.

The current version is retired on date D.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 132

v1 v1.1 v1.2 ...

New Incremental

v2.1

Incremental

v2

New

Time

Information flow for ideas

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 133

Old Myth

If we try hard enough, we can get the program
right the first time!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 134

Perceived Reality

Fred Brooks says:

“Plan to throw one [the first one] away; you
will anyway!”

In other words, you cannot get it right until the
second time.

This proved to be a myth too!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 135

Counter-Reality

In keynote of ICSE ’95, Brooks admits that
“Plan to throw one away” is wrong.

He says “Incremental Build is Better”

g A crucial function of the designer is
helping the client decide what he or she
really wants

g The best way to decide: rapid prototyping

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 136

Counter-Reality, cont’d

g Growing, rather than building, software

- quick to running software (You should
see the effect on the morale of
development team!)

- early user testing
- build-to-budget is possible

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 137

Myth:

I/We can write a better X than that brain-
damaged piece of ____ from ABC Co.

I/We can certainly write X for a lot less than it
costs us to buy it from those jerks at ABC Co.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 138

Reality:

Suppose X has been out y years and it takes
you z years to implement X yourself, then
ABC will always have y+z years head start in
eliminating bugs and stabilizing their X.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 139

On the assumption that ABC is charging a fair
market price for X (and if they aren’t, they will
not be in business for long), then they are
charging per copy 3 to 6 orders of magnitude
less than it cost them to build it (on the
assumption of selling thousands to millions of
copies to recover their costs). There is no way
that you are going to build X for anywhere
close to what it costs you to buy it.

Furthermore, your software will always be
flakier than theirs.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 140

In general, if the product exists and is selling
(and thus, the price is fair and the product is
stable enough not to drive customers away),
it’s always a better bet to buy it rather than
build it.

Furthermore, if your product W requires a
functioning X, buying X, incorporating it into
W, and agreeing to pay ABC a royalty for each
copy of W(X) sold, allows you to get a stable
W out to the market y+z years earlier!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 141

Hopelessness of Startups

This all would seem to say that a startup is
hopeless.

Well, it is ! 95% of them fail—poof!

If a startup is to succeed, it needs to make
something at least an order of magnitude
better or an order of magnitude cheaper than
what is out there; otherwise it cannot grab the
market.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 142

And you gotta make it this order of magnitude
{better|cheaper} in less time than anyone else
trying to make it also, in what John Boddie
calls crunch mode.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 143

Myth:

Distributed, Client/Server Systems are a major
breakthrough in system architecture that will
revolutionize programming and make it even
easier.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 144

Reality:

It’s just another useful tool with its good
points and its not so good points.

While Burton Swanson in 1996 saw a near
social sweep for C/S technology, a
replacement wave, Bob Glass in the same year
saw deployment of C/S technology at only a
26% level with mainframes holding at 66%.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 145

But what of the complexity of D, C/S software?

g Components of a distributed system are
simpler.

g Decentralized systems as a whole are more
complex.

Which dominates?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 146

Scott Schneburger’s 1997 study showed that
the complexity of decentralization far
outweighs the simplicity of the components.

Given that the total cost of maintenance is
some 50-80% of the total cost of a system and
that complexity makes maintenance harder,
the D, C/S technology may end up increasing
system costs in the long run.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 147

Requirements

Prototyping
Requirements Difficult for Client
Requirements Volatility
Study of Requirement Errors
How Hard Are They?
Formal Methods for Requirements
Safety

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 148

More Myths:

A well-written, comprehensive requirements
specification is all you need!

All of our problems would be solved if we had
written a complete requirements specification.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 149

Reality & Myth:

Interview client.

Prepare requirements specification the size of
the New York City telephone directory.

Give it to the client, saying “Let me know in a
week if it says what you want”.

A week later, the client says, “Yes!”

Do you believe him or her?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 150

Reality:

Of course not!

Nonsense!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 151

Another Way

You build a prototype and give it to the client

You walk him or her through it or you let him
or her play with it for a week, saying “Let me
know in a week if it does what you want”.

A week later, the client says, “Yes!”

Do you believe him or her?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 152

Reality:

Far more likely!

Scott Gordon and Jim Bieman observe that
users are more likely to be comfortable with a
prototype than a specification, which can be
dull reading and open to many differing
interpretations; sample display output is more
definitive. Thus, the prototype makes it easier
for users to make well-informed decisions and
suggestions.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 153

Myths:

Several related myths (& more about a
previous one):

You people start the coding while I go find out
what the customer wants.

Requirements are easy to obtain.

The client/user knows what he/she wants.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 154

Reality:

According to Ruth Dameron (by e-mail):

The programmer who says these is suffering
from the myth that the customer would be able
to know what he or she wants and to say it
just because the programmer asked.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 155

Most people (especially non-technically
oriented) learn while doing; they’ve got to see
some kind of prototype (even if it’s only yellow
stickies on a board) to discover what they
want.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 156

Myth:

After the requirements are frozen, ...

When the customer is satisfied, ...

When the customer stops asking for changes,
...

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 157

Reality:

Poppycock!!

The only customers that are satisfied and
have stopped asking for changes are
themselves frozen!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 158

E-Type Systems

Meir Lehman identifies concept of E-type
system.

It is a system that solves a problem or
implements an application in some real world
domain.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 159

Once installed, an E-type system becomes
inextricably part of the application domain, so
that it ends up altering its own requirements.

g Consider a bank that exercises an option
to automate its process and then discovers
that it can handle more customers.

g It promotes and gets new customers, easily
handled by the new system but beyond the
capacity of the manual way.

g It cannot back out of automation.
g The requirements of the system have

changed!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 160

Daily use of a system causes an irresistible
ambition to improve it as users begin to
suggest improvements.

Who is not familiar with that, from either end?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 161

In fact, data show that most maintenance is
not corrective, but for dealing with E-type
pressures!

Perfective

Adaptive

Corrective

O
th

er

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 162

More Realities:

Martin & Tsai’s study of requirement errors:

They conducted an experiment to identify
lifecycle stages in which requirement errors
are found.

An experienced user produced a polished 10-
page requirements document for a centralized
railroad traffic controller.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 163

Ten 4-person teams of software engineers
were given the requirements document in
order to find errors in it.

The user believed that the teams would find
only 1 or 2 errors.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 164

92 errors, some very serious, were found!

The average team found only 35.5 errors, i.e.,
it left 56.5 to be found downstream!

Many errors were found by only one team!

The errors of greatest severity were found by
the fewest teams!

CONCLUSIONS: Requirements are hard to get
right!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 165

How hard are they?

Most errors are introduced during
requirements specification!

Boehm: at TRW, 54% of all errors were
detected after coding and unit test; and, 65-
85% of these errors were allocatable to the
requirements, design, and documentation
stages rather than the coding stage, which
accounted for only 25% of the errors.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 166

So most errors either are required or are the
unplanned result of situations that are not
even mentioned in the requirements
specifications.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 167

So how do you find the requirements?

g Interview
g Observe
g Become a user
g Use imagination
g Prototype
g Validate all that you think you learn
g Accept that you will not find everything!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 168

Myth:

If only you had written a formal specification
of the system, you wouldn’t be having these
problems

Mathematical precision in the derivation of
software eliminates imprecision

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 169

Reality

Yes, formal specifications are extremely
useful in identifying inconsistencies in
requirements specifications, especially if one
carries out some minimal proofs of
consistency and constraint or invariant
preservation,

just as writing a program for the specification!

Formal methods do not find all gaps in
understanding!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 170

As Eugene Strand and Warren Jones observe,
“"Omissions of function are often difficult for
the user to recognize in formal
specifications”....

just as they are in programs!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 171

von Neumann and Morgenstern (Theory of
Games) say,

“There’s no point to using exact methods
where there’s no clarity in the concepts and
issues to which they are to be applied.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 172

Preservation of Difficulty

Indeed, Oded Sudarsky has pointed out the
phenomenon of preservation of difficulty.
Specifically, difficulties caused by lack of
understanding of the real world situation are
not eliminated by use of formal methods;
instead the misunderstanding gets formalized
into the specifications, and may even be
harder to recognize simply because formal
definitions are harder to read by the clients.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 173

Bubbles in Wall Paper

Sudarsky adds that formal specification
methods just shift the difficulty from the
implementation phase to the specification
phase. The “air-bubble-under-wallpaper”
metaphor applies here; you press on the
bubble in one place, and it pops up
somewhere else.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 174

One Saving Grace

Lest, you think I am totally against formal
methods, they do have one positive effect,
and it’s a BIG one:

Use of them increases the correctness of the
specifications.

Therefore, you find more bugs at specification
time than without them, saving considerable
money for each bug found earlier rather than
later.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 175

Myth:

Replace that ancient, slow, creaky electro-
mechanical system that can wear out with
sleek, fast, whiz-bang software software that
can never wear out.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 176

Reality:

Sure, it won’t wear out, but the questions are,
“Will it even be correct?” and “If it is correct at
all, will it be correct at all times?”

“If it ain’t broke, don’t fix it!”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 177

Therac 25 Disaster

Between June 1985 and January 1987, the
computer-controlled radiation therapy
machine Therac-25 massively overdosed 6
people, all of whom developed severed
radiation sickness and all but 1 of whom has
died (as of 1994). It was the worst accident in
the history of radiation therapy machines.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 178

A study by Nancy Leveson showed that earlier
machines, the Therac-6 and Therac-20, were
controlled by computer, but the computer was
added after the machines had been available
with electromechanical (EM) controls. In
particular, the safety controls were still EM
even after the addition of the computer.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 179

In the Therac-25, designed from the start with
computer control, more of the control,
including the maintenance of safety, was
given to the computer.

Software checks were substituted for many of
the traditional hardware interlocks.

Nominally, this was a good plan; they reused
code that appeared to be reliable.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 180

The problem was that the Therac-20 was a
reliable system !

The original Therac-20 software had a bug that
just never showed up because the
independent hardware interlocks prevented
overdoses.

When they programmed the new checks into
this buggy code, and they happened to never
duplicate the error causing situation in the
tests, the old bug was never discovered and
reared its ugly head later with fatal results.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 181

After much denial and protestation that the
overdose was impossible, the manufacturer
was forced to put the independent hardware
interlocks back into the machine, just to be
sure, even after they had found and fixed the
bugs.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 182

Design

Extending Prototype
Reuse

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 183

Myth:

The prototype can always be extended.

Reality:

Extending a prototype is a good way to
preserve lousy design decisions.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 184

Advice:

Build the prototype in a language like LISP or
Prolog so that temptation to turn it into
production version is reduced!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 185

Myth:

Reuse will save money and increase software
reliability

After all, a reused module does not have to be
designed, developed, inspected, and tested
again. Moreover the fact that the reused
module has been out there under daily use
means that it is far more tested, debugged,
stable, and reliable than any newly written
module for the same functionality.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 186

Yes, the module designed for reuse costs
about twice what the same module designed
for only one-time use. However, you amortize
this extra cost by reusing the module dozens,
hundreds, or thousands of times.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 187

Note that there are many different kinds of
reuse:

g specification
g design
g source code
g object code
g macro
g procedure
g class/abstract data type

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 188

and there are many means of customization to
specific requirements.

g parameter passing
g parameter passing
g white box modifications
g black box encapsulation

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 189

Reality:

Neil Maiden and Alistair Sutcliffe point out that
the human issues in reuse confound the
advantages.

Finding opportunities for reuse, identifying
candidate reusable components, adapting
them to the current requirements, etc. may
cost more than just developing from scratch.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 190

A slight mismatch between the new
requirements and the reused module’s
specification may make more reliability
problems than exists in immature software
designed for the specific occasion.

Identifying the right reusable components,
comprehending them, customizing them, all
necessary for successful reuse, is a lot harder
than thought.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 191

A 1991 IBM study by Kruzela on software
maintenance found that 50% of all
maintenance time is spent in just
understanding the code to be changed; this is
what makes maintenance so much more
expensive per line than writing new code.

According to Thompson and Huff,
understanding unfamiliar software is complex
and error prone.

How well it is done by a given programmer is a
function of both skill and luck, and individual
differences will come to play here.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 192

However

However, as Ivar Jacobson, Marty Griss, and
Patrik Jonsson point out, there are
circumstances in which reuse works and pays
well.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 193

In an organization producing a family of
related products, a carefully planned internal
reuse business helps to tame the
pandemonium that usually results as the
organization tries

g to maintain and enhance a variety of
existing related products and

g to introduce new products in this family
rapidly, to stay ahead of the competition

all running on a variety of platforms.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 194

In such a situation, large portions of the code
in all versions, both revisions and variations,
of the products in the family are very similar,
with differences that are minor in size but
major in importance.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 195

When fully functioning, the reuse business
encourages developers

g to build adaptable modules for all functions
and

g to use and adapt already developed
modules when producing
f new versions of existing products and
f new products.

The reuse maturity model below summarizes
the way such a reuse business works.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 196

None

Informal
code reuse

Black-box
code reuse

Managed
workproduct

reuse

Architected
reuse

Domain-specific
reuse-driven
organization

Reduced
maintenance

costs

Broader
coverage

Interoperability,
high reuse levels

Reduced
development

time

Improved time to market, costs, quality

Be
ne

fit

Rapid custom product
development

Investment, experience, time

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 197

Such reuse businesses avoid the problems
mentioned above because

g the modules subject to reuse are all for
products in a single family of similar
products

g the modules are designed from the
beginning with reuse in mind

Much of the mystery about which modules to
reuse and how to adapt them is gone.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 198

Coding

Coding Costs
Optimization
Object Orientation

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 199

Myth:

Coding is expensive.

Coding is a major part of the lifecycle.

Coding is the resource eater.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 200

Reality:

As it can be if you are careful

EXPENDITURE DISTRIBUTION OVER LIFE-CYLE

C T MDR

MTCDR

As it often is

R: Requirements Definition

C: Coding

T: Testing

M: Maintenance

D: Design

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 201

Even if you’re not doing it right (i.e., are doing
the top), coding is bubkes compared to
requirement specification and design or
testing.

What is the implication of all this?

For one thing, methods and tools directed at
only the coding phase cannot have a major
impact on the lifecycle.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 202

Myth:

We gotta optimize it!

We gotta squeeze every last nanosecond out
of it!

We gotta squeeze every last byte out of it!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 203

Reality:

Today’s computers are sitting there twiddling
their thumbs > 95% of the time, even if the
human users think they are using them all the
time.

For most software, efficiency just does not
matter.

The response time bottle neck is time to move
cursor’s image on screen to the next line or to
draw the characters being displayed.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 204

Optimization?

First Rule (Don Knuth):

DON’T!
With today’s machine speeds and costs, the
savings in machine time and its cost can
never equal the cost of the programmer’s time
to optimize.

With today’s underutilization of machines and
for most software, there’s no real need.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 205

The lost in clarity of program and increase in
difficulty to maintain are not worth it!

However, sometimes you must optimize
(sigh!),

g to fit in machine,
g to meet hard real-time constraints,
g to beat performance of competitor in

commercial software.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 206

Second Rule (Knuth):

NOT YET!
In any case, it’s useless to optimize before
you have a running program.

Only then can you know what parts need
optimization and, thus, where it will pay off.

80% of the execution time is spent in 20% of
the code.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 207

If you knock a microsecond off something that
is executed only once, you’ve gained nothing,
and maybe you’ve introduced an error!

If you knock a microsecond off something that
is executed 2,000,000 times, you’re really
saving time!

You need to have a running, instrumented
program to determine where to optimize.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 208

Third Rule (Berry):

Very Carefully ...

from a known correct program

Hide the optimizations in as small a module as
possible.

It is often better not even to optimize; find a
better algorithm-data-structure combination.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 209

Last Rule (Berry):

DON’T!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 210

C++ is like teenage sex

It is on everyone’s mind all the time.
Everyone talks about it all the time.
Everyone thinks everyone else is doing it.
Almost no one is really doing it.
The few that are doing it are:
- doing it poorly,
- sure it will be better next time, and
- not practicing it safely.

— Graffiti found in a toilet stall in the Faculty of
Computer Science, Technion, November, 1993

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 211

C++ and teenage sex

It should say, “Programming in C++ is like
teenage sex”.

And even that’s wrong!

It should really say, “Object-oriented
programming in C++ is like teenage sex”.

It is really inappropriate to equate OOP and
C++; you can do OOP without C++, and you
don’t need to do OOP when you use C++.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 212

Testing

Bugs
Bug Frequency
Regression Testing
Testing and Reviews

Walkthroughs
Inspection

Time for Inspections
Growth of Bugs
Bugs & Reliability
N-Version Programming

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 213

Myth:

Bug

The word itself is a myth

It implies that a bug is something that an
otherwise healthy program gets

Maybe as a result of contagion from sitting in
the same memory with other buggy
programs?!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 214

Reality:

The bug that shows up after delivery to the
client was probably required into the
software, with probability of about 60%,
according to data by Boehm and others.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 215

Myth:

“Whew! that was the last bug!”

“We found the last bug! now we’ll fix it!”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 216

Reality:

Mills says:

“The best way to know that you have found
the last bug is never to find the first bug.”

Any bug, even a tiny one, is a sign of
sloppiness or lack of understanding in
development, and sloppy development or lack
of understanding leads to lots of bugs, never
just one.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 217

Studies by Myers and others have shown the
following bug arrival graph over the testing of
one release.

Time

B
ug

s
fo

un
d

pe
r

un
it

tim
e

That is, they tend to arrive in bunches if they
arrive at all.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 218

faults

0

1

Number of faults already found

Probability
of existence
of additional

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 219

More Reality:

Dijkstra says:

“Testing can be used to show the presence of
errors, never their absence!”

This quote suggests a certain mind set for
testers.

They should be trying to find errors rather
than trying to show that there are none.

Goals have a bad habit of turning into reality!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 220

Myth:

After an error is found in an unexpected place:

But, I tested that part before and didn’t touch it
for this new change!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 221

Reality:

All parts of a program are connected to all
other parts, even if you don’t think so,
especially if you have pointers (and who does
not?).

This is why experienced testers re-run all
previously run test cases whenever a new
version of a program is produced.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 222

There is even a name for this kind of testing,
Regression Testing.

Having a program automatically running test
cases and comparing actual to expected
output helps a lot.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 223

Myth:

Let’s test it thoroughly.

Testing will find the problems.

We’ll find the bugs later when we test it.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 224

Testing is running a program against
predetermined data for the purpose of
detecting a difference between the program’s
output and the expected output for the
purpose of finding errors in the program.

Test cases and expected outputs are
determined
g according to the specifications, exercising

every feature, option, etc.
g according to the program structure,

exercising every statement, path, etc.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 225

Thoroughly testing a program is impossible
(requires unbounded number of test cases);
so try to choose test cases that will expose all
errors.

That’s very difficult, especially since we do
not know what all the errors are, and if we did,
we would not need the test cases!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 226

Reality:

A number of studies have shown testing not
very effective at finding bugs.

They have compared errors located by various
methods to all errors ever reported for a
product over its lifetime:

g Inspections found 67 – 82% of them.

g Walkthroughs found around 38% fewer of
them than inspections.

g Traditional testing found 15 – 50% of them.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 227

The studies are described and summarized in
two good books on software inspection, one
by Gilb and Graham and the other by Ebenau
and Strauss.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 228

Walkthrough:

Author of a module describes the inner
workings of the module to a group of people,
generally from the same project, for them to
spot internal errors and inconsistencies as
well as interface problems with their own
modules.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 229

Inspection:

Walkthrough +

g Reviewers are given the module at least a
day before meeting and are told to review
the module privately ahead of time.

g Meeting moderated by facilitator.
g Minutes of meeting captured by recorder.
g Meet for exactly two hours.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 230

g Goal of meeting is to find as many
problems as possible.

g No time is wasted at meeting to consider
solutions.

g Author finds solutions later and submits
module again for another inspection.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 231

Why are walkthroughs and inspections more
effective?

Probably because the walkers through and the
inspectors are humans who are capable of
using their keppeles (noggins) to think.

When was the last time you saw a test case
think?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 232

Ah, but why cannot the human running the
test cases think? He or she can, but generally
there are too many test cases, very purposely
to get maximum coverage, to allow time for
careful thinking about the implications of
each.

Also many times, the test cases are run by a
program that runs each case and compares
the output with the expected output, reporting
only deviations; this driver does not think, and
humans have fewer opportunities to think
about test cases in general.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 233

Note that the difference in the effectiveness of
walkthroughs and inspections is probably due
to the formality difference.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 234

Still Pretty Bad

As good as inspections are, the situation
leaves a bit to be desired.

Even with inspections, the data show that at
least 18% of the bugs found in a program over
its lifetime will be found by the customers and
users

And of course, you know what kind of
wonders this does for your company’s
reputation!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 235

Myth:

We don’t have time to do inspections now on
every step!

We gotta finish the code sooner so we can test
it sooner.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 236

Reality:

If you don’t have time to do the inspections
then you don’t have time to finish the project
satisfactorily, period.

g In any case, an error that is in the software
now is not going to disappear by itself; you
have to find it first.

g If you don’t find it now, then you may or
may not find it later before shipping.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 237

g If you don’t find it before shipping, then the
customer will find it.

g In any case, finding it later means that it
costs (time, money, whatever) 10 to 100
times to fix as finding it now.

g Finding it now means the least cost (time,
money, whatever) to fix it.

g So if you don’t have time to inspect, find it,
and fix it now, then you certainly will not
have time later, when it will take longer to
fix it.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 238

Myth:

The next release will be better!

The bug will be fixed in the next release!

When the product is finally bug-free ...

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 239

Ha!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 240

Reality:

The famous Belady-Lehman graph of bugs
found over all releases of a product:

Time

B
ug

s
fo

un
d

pe
r

un
it

tim
e

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 241

This curve is the result of a theory that
attempts to explain a well-known observed
phenomenon of eventual unbounded growth
of errors in software that was being
continually fixed, i.e., a general decay in
modified software.

The theory assumes an ε > 0 probability of
introducing more than one error when
correcting one error.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 242

This suggests that at a certain point, either:

g declare all current and remaining bugs to
be features (Knuth has decreed that upon
his death, all remaining bugs in TEX and
METAFONT are features!)

g start all over with a new program
development or maybe reengineer the
software.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 243

More Reality:

The real-life graph is not as smooth as the
theoretically derived graph.

Time

B
ug

s
fo

un
d

pe
r

un
it

tim
e

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 244

We will not be able to identify the real min
point until we are well past it.

So this means we must keep the sources of all
releases, with a configuration management
system, so we can roll back to to the best
release, some number of releases ago.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 245

Myth:

The program has to be perfect.

We have to squeeze out all bugs.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 246

Reality:

Reliable computations are obtainable from
buggy programs, which after all, are the only
kind of programs there are!

David Parnas observed:

I can build a reliable system with thousands of
bugs, if you let me choose my bugs carefully.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 247

Working around bugs is possible and is often
required.

Both users and programs evolve to allow
users to get trustable computations from
programs despite bugs.

Simply, users learn not to use the bug that is,
in effect, a feature (unless of course they want
that feature!).

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 248

Myth:

The number of defects is a good predictor of
reliability:

The fewer the defects the greater the
reliability

Hence some measure defects during
development as evidence of code reliability
and to calculate the likely reliability.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 249

Reality:

It’s mostly right, as we observed before, but..

Shari Lawrence Pfleeger, Ross Jeffrey, Bill
Curtis, and Barbara Kitchenham caution not to
count all defects the same way.

They report that Ed Adams of IBM found that
80% of the reliability problems are caused by
only 2% of the defects.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 250

We need to examine the defects carefully to
see which cause reliability problems.

Remember what David Parnas says:

“I can build a reliable system with thousands
of bugs, if you let me choose my bugs
carefully.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 251

Myth:

A standard approach to hardware fault-
tolerance, to have multiple versions of a unit,
is a great approach to software reliability.

N-version programming will increase your
software’s reliability.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 252

Reality:

N-version programming is a good way to
spend N times the original costs while getting
no more reliability and possibly even less.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 253

Hardware

In hardware, the problem is decaying
components.

Executing multiple copies of the unit
concurrently, voting, and using the majority
(say 2 out of 3) result is a good way to guard
against unit failure.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 254

But note what is being protected against:

physical component failure
not

design errors

If none of the units have failed physically, then
if there is a design error that causes an
erroneous result on one of them, then all of
them will have the same result.

The approach works because relative to the
computational speed, the time until unit failure
is independent of that of all other units.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 255

Software

Assuming no failure of the underlying
hardware, all copies of the same program will
always produce the same result, even when
they are committing an error.

Therefore, N voting copies of a program will
always choose unanimously and obviously
has the same reliability as the program itself.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 256

For software, the reliability problem is that of
design errors; programs do not wear out; that
is a program presented with the same input
will always produce the same result no matter
how many times the program has been run
and how long it has been sitting in the
memory unused.

In other words, multiple identical software
units are no more a protection from design
errors than are multiple identical hardware
units.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 257

If N identical software units are useless, then
perhaps N independently developed programs
with the same intended functionality will help.

The theory shows, but it should be clear too,
that this approach to protecting against
design errors depends on the errors that each
program can make being independent of those
of every other program.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 258

Experiments by Nancy Leveson and John
Knight show that this independence
assumption does not hold, that in fact,
different programmers working from the same
specification tend to make the same errors.

In fact every experiment with the N-version
approach to software fault tolerance has found
that independently written software routines
do not fail in statistically independent ways.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 259

People tend to make the same mistakes in the
same harder parts of the problem, with the
essentially the same well-known best
algorithm and in the same boundary cases of
the input space.

Any shared specification can lead to common
failures and testers omitting the same nominal
and unusual cases that the developers
overlooked.

Consequently a majority of so-called
independent programs might indeed vote for
the same erroneous output.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 260

Ah! so have the programmers program from
independently written specifications.

But then, it is not even clear that they
programs will be implementing the same
requirements! We all know how hard it is to
get requirements right.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 261

Moreover, even when programming from the
same requirements, there are situations in
which N so-called independently developed
programs will be less reliable than any one.

The first experiments in N-version
programming were conducted in the early
1980s in my SE class at UCLA with a simple
5-command formatting program.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 262

Different programs had exactly the same list
of words on each line, but with different
distributions of extra white space between the
words on any given line.

A human would not regard these lines as
different, but the original voting program did
regard them as different and in fact produced
fewer correct results than any one program.

Many times no majority could be found at all!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 263

Ah! So change the definition of agreement!

But then the voting program begins to be
more complex and its own reliability begins to
be an issue.

The conclusion: There are far better and
cheaper approaches to improving reliability
than writing the same program N times, e.g.,
inspection which typically costs 15% more.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 264

Maintenance & Legacy Software

Pervasiveness
Dominance

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 265

Myth:

Design/coding/development is where the
action/excitement/money is!

Most programmers develop new code.

Most of a programmer’s work is developing
new code.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 266

Reality:

In 1980s,

Maintenance

Specification

Requirements

Planning

In
te

gr
at

io
n

C
oding

Design

T
esting

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 267

Per David Parnas, 1994

100

80

60

40

1960 1970 1980 1990 2000

S
p
en

t
o
n
 M

ai
n
te

n
an

ce
P

er
ce

n
ta

g
e

o
f

S
o
ft

w
ar

e
R

es
eo

u
rc

es

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 268

We are heading to the day in which nearly all
of our work will be modifying existing
software.

Even today, a new field is springing up, that of
Legacy Software, existing software that is

g too valuable to scrap,
g too difficult to modify or extend without

error,
g too expensive to rebuild, but
g inadequate in its current form.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 269

Jim Horning observed:

Hardware is the part you can replace.

Software is the part you have to keep,

because it’s so expensive and nobody
understands it any more!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 270

Relative Hardware-Software Costs

1950 19900%

100%

Hardware Software

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 271

The last two realities suggest that the key to
keeping software costs down is to write code
that is easily modified.

Choose programming methods whose guiding
concern is making inevitable modifications
easier.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 272

For example, Parnas’s information hiding
method tries to decompose a system into
modules such that whenever the
implementation of one concept is changed,
only the one module implementing that
concept is affected!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 273

The Y2K Problem

You’ve all heard of the famous Y2K problem,
the Year 2000 Problem?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 274

Myth:

The problem with the Y2K is that all of the data
structures are big enough for only the last two
digits of the year. Therefore, come the year
2000, we’re going to need more digits or else
2000 will look smaller than 1999.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 275

Reality:

Given the cheap cost of memory these days,
the space problem is minor, compared to the
problem of having to suddenly work with
different algorithms that take into account the
changes, i.e.,

g 00 is really more than 99,
or
g some dates are 4 digits and others are 2,
or
g ...

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 276

More Reality:

The different algorithms problem is minor
compared to the fact that everything will have
to be recompiled with new data structure
definitions and new date calculation
algorithms.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 277

Even More Sobering Reality:

All of the space problems and all of the funny
new algorithms and all of the recompilation
required are bubkes (zilch, nada, rien, nichts,
klum) compared to the REAL problem with the
Y2K...

What is it??????

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 278

The REAL problem:
The REAL problem is that all of the code to
deal with dates is scattered all over all of the
legacy programs, very often not identified by
comment and very often disguised as
arithmetic or shifting or other obscurities.

Compared to finding all the code to change,
and you have to find it all or else the program
bombs on 1 January 2000, all the other
problems are a piece of cake, a puzzle
designed for 2 year olds, putting a round peg
into a round hole, etc. etc.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 279

Solutions

All solutions that attack only the data
structure and algorithm problems are doomed
to repeat history.

No matter what size you set the data to be,
there will be a maximum representable date,
although maybe very far into the future, and at
that date, X you will have a YX problem.

The only REAL solution is one that attacks the
REAL problem.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 280

g Build an encapsulated Date abstraction.
g Hide the data structure and algorithm

inside of it.
g Rewrite all the code, replacing code that

uses the date data structure directly by
calls to proceudres of the Date abstraction.

You still pay for the data structure and
algorithm changes, the recompilation, and the
finding of all date accessing code...

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 281

BUT you never again face the REAL problem.

At YX , you change the inside of the Date
abstraction and recompile; you do not have to
find the using code again.

That is, we were pretty stupid about the dates
once, but we will have learned from our
mistake not to repeat history.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 282

Documentation

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 283

Myth:

We’ll document that later when we have time.
Now, we gotta finish up the coding to meet the
deadline.

We’ll update the documentation next Tuesday
after we get this module out of the way.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 284

Reality:

Documentation that is put off never seems to
get written!

Either,

g there never is enough time to write it, or
g when there is enough time to write it, we’ve

forgotten what we wanted to say

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 285

Guindon, Krasner, and Curtis have studied
designers and have concluded:

Many design breakdowns occur because of
cognitive limitations:

g Designers forget to return to design goals
they have postponed.

g While working on one part they cannot
record opportunistic design ideas that
affect another part.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 286

Sound familiar?

Likewise with documentation!

Also, if one is documenting during
programming, these breakdowns are less
likely.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 287

“The job is not done until the paper work is
done”

The problem with documentation is that it is
perceived as a necessary evil which is done
only after the fact

So it must be done during the programming!

Remember, there never is enough time to do it
right!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 288

But it is not going to be done during
programming unless there is an incentive to
do so.

Also any technological or managerial scheme
to force documentation can be subverted by
unwilling programmers.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 289

Theory

Mathematics vs. Programming
Knuth Discovers
Mushiness
NP-Completeness

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 290

Myth:

Mathematics is harder than programming.

Proving theorems is harder than
programming.

The true sign of intellectual achievement is
being able to prove theorems, not
programming; programming is trivial.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 291

Reality:

Each new program is a new formal system,
modeling a real-world system, and this formal
system is built from the ground (or library) up!

Each program is a formal system in the sense
that one can reason logically about its
behavior.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 292

The data of a program form a model of the
relevant real-world domain, and the operations
of the program transform this model
according to a related model of real-world
transformations.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 293

Correspondences:
Basic Statements Axioms
Constructors Rules
Data Definitions
Invariants
Statements

M
N
O

Theorems
Functions

So, programming is at least as difficult as
developing a mathematical theory.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 294

But, not all programs build a new theory!

True, but not all mathematics is new either!

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 295

Actually, programming is harder in several
very important senses!

First, consider the audience of the work:

Theorems People
UKWIM works
Can accept imprecision

Programs Computers
UKWIM does not work
DWIM does not work
Cannot accept imprecision

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 296

Mathematicians will make simplifying
assumptions to keep the math tractable; the
goal is usually good math, not always
modeling reality, e.g., Euclidean geometry.

Software cannot make simplifying
assumptions that can cause deviations from
reality that invalidate functionality, e.g., in
process control of fast and dangerous
situations.

Therefore, program models tend to be more
complex than models that mathematicians
study.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 297

The notions of correctness in mathematics
and programs are different.

A mathematical model must be consistent; it
need not match reality (be correct), and it need
not be complete (in the formal sense).

A program model must be consistent; it must
match reality; and it must be complete (in the
sense that it reacts gracefully to all inputs).

For example,
g √ is not defined for input < 0
g sqrt must deal with all input

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 298

Social processes for mathematics and
programs are different.

Theorems written by mathematicians for
publication

g undergo scrutiny of other interested
mathematicians,

g are interesting; otherwise, why bother?

As a result, errors are found and corrected.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 299

Programs

g are not looked at by other programmers,
g are boring.

Therefore, there are no error-finding social
processes.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 300

Program proofs verify only consistency with
specification and not correctness, and are
meaningless if the specification is not what is
intended.

Testing shows only the presence of errors and
not their absence.

Therefore, it is much harder to ensure the
correctness of programs than theorems.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 301

Note that a key point of inspections is to try to
introduce to programming the social
processes that are so successful at finding
errors in theorems.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 302

Knuth and Software

Donald E. Knuth, one of the premier computer
scientists in the world, who has done such
mathematically respectable work as:

g Member of Algol 60 Committee
g Attribute Grammars
g 3-Volume Encyclopedia on Algorithms
g Knuth-Bendix Algorithm

has spent ten years of his life developing two
major programs for document typesetting, TEX
and METAFONT.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 303

These projects started out as a brief attempt
to make sure that all of his subsequent books,
to be printed with computer-driven
typesetters, would look as good as his earlier
hand-typeset books.

They mushroomed into 10-year efforts
yielding, to date, two releases of each.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 304

I recall Knuth’s giving a lecture at UCLA,
about one year after starting, in which he said
that he had hoped to have TEX fully running by
tonight—as if another day or so would have
cracked the problem that was preventing it
from running!

It took him another 10 years to finish, and he
still is not finished.

Knuth published a paper in 1989, The Errors of
TEX, describing this effort and listing the 867
errors found by users in the 14,000 line Pascal
program.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 305

Knuth gave a keynote address at IFIP ’89
“Theory and Practice”.

He explained that one of the lessons learned
from the development of his typesetting
software is that “software is hard.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 306

What were the lessons I learned from so
many years of intensive work on the
practical problem of setting type by
computer? One of the most important
lessons, perhaps, is the fact that
SOFTWARE IS HARD.... From now on I shall
have significantly greater respect for every
successful software tool that I encounter.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 307

During the past decade I was surprised to
learn that the writing of programs for TEX
and for METAFONT proved to be much more
difficult than all the other things I had done
(like proving theorems or writing books).
The creation of good software demands a
significantly higher standard of accuracy
than those other things do, and it requires a
longer attention span than other intellectual
tasks.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 308

The remark that writing software is more
difficult and requires greater accuracy than
proving theorems merits close examination.

The difference is the audience.

The programmer is writing for an incredibly
stupid and literal audience, the computer, that
cannot tolerate minor incompleteness.

The mathematician is writing for a highly
intelligent audience, the professional
mathematicians, that can be counted on to fill
in on missing or wrong details.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 309

But note that for Knuth, proving theorems is
hard too.

He, above all, knows how easily published
theorems contain, plainly and simply,
mistakes.

Knuth has had to publish two consecutive
corrections to a published proof of a theorem
about attribute grammars.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 310

Myth:

Software engineering (as an academic
discipline) is so soft and mushy. How can you
work in it?

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 311

Reality:

Bill Curtis says

“Whenever I discuss human issues in
software engineering someone always says,
‘Right, that’s the soft side of computer
science.’ ... Nevertheless, with all the
allusions to soft, mushy material, hard
programs continue to be written by humans
and not by machines, expert systems,
automatic program generators, and other
objects worthy of federal funding.”

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 312

It was computer scientists that observed that
there is a serious problem in software
development. To my mind, if we have a
problem that we have to solve, we gotta go
where the problem takes us and explore
whatever solutions may work. If those
solutions are non-technical and not based on
theory, so be it.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 313

The fact is that for nearly 30 years now, we
have attempted to solve the problem with
technology, theory, etc. These have made
some advances, but the problems remain and
seem to have gotten worse, in some sense
(perhaps due to ambition fueled by
successes). Recently, we have begun to
recognize that the problems will not be
cracked unless we also consider non-
technical issues.

Note word “also”.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 314

Myth:

The problem is NP-complete! Therefore,

g we can give only small inputs to the
program (for the problem),

g we have to use heuristic methods,
g we have to accept only an approximate

solution,
g we have to accept the possibility of no

solution being found,
g we may have to wait an unacceptably long

time.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 315

Reality:

Actually, usually the above is not a myth, but
occasionally we have Technological
Trivialization of the problem.

Ultimately any problem can be thought of a
finite problem, i.e., for any problem, we can
build a finite state machine that will solve all
the problem for all input no larger than a given
maximum.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 316

However, usually, the number of states of the
machine is so large as to be impractical; the
memory of real machines is too small or real
machines are not fast enough to complete the
computation in a reasonable time even though
the complexity of the solution is linear (with a
BIG multiplicative constant).

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 317

So we have gotten into the habit of
considering the problem unbounded and
finding algorithms that handle all possible
inputs (the Turing Machine game).

Many times these algorithms have exponential
or higher growth.

So we work on heuristic, probabilistic, and
approximate solutions.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 318

However, surprise, surprise, surprise!!

For some of these problems, machine sizes
and speeds have grown to the point that for all
possible inputs that happen in real life,
exploring all possible states is feasible.

We can suddenly write programs that give
complete, exact solutions in a reasonable
amount of time for all possible inputs.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 319

For example, the problem of optimal floor plan
layout according to specified criteria is
normally NP-complete.

However, recently a representation for a floor
plan was discovered such that:

For all floor plans that are possible for a
normal house (e.g., < 20 rooms),

it is possible to generate all unique-up-to-
symmetries floor plans and to evaluate all
according to the criteria in less than 1
hour.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 320

Suddenly, all the heuristic, approximate, and
probabilistic solutions are unnecessary.

Same thing happened with relational
databases, which were only a nice theory until
mid 80s.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 321

Conclusions

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 322

Truth:

A good software engineer is a lazy one.

What kind of laziness?

g planning ahead to avoid work

g reuse

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 323

Truth:

We software engineers need humility, humility
to recognize our limitations,

g the need for help, and
g the limitations of the help, both

methodological and technical.

 1997 Daniel M. Berry Software Enginering Myths & Realities Pg. 324

