
Testing, Reviews,
and Inspections

Daniel M. Berry

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Syllabus

I. Background and Theory of Inspections
II. In-class Inspection of Instructor’s

Document
I. Group Inspection of Document Provided by

One Member

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Outline -1

• Sources of information
• Background
• Bugs come early and stay
• Finding bugs with reviews
• Psychological impediments

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Outline -2

• Procedures for doing reviews
• Experimental evidence
• Why inspections work
• Starting an inspection program
• Evaluating effectiveness of program

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sources of Information -1

M.E. Fagan, Design and Code Inspections and
Process Control in the Development of
Programs, Technical Report IBM-SSD TR
21.572, IBM Corporation, December, 1974

M.E. Fagan, “Design and Code Inspections to
Reduce Errors in Program Development”, IBM
Systems Journal 15:3, pp. 182–211, 1976

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sources of Information -2

T. Gilb and D. Graham, Software Inspection,
Addison-Wesley, Wokingham, UK, 1993

R.G. Ebenau and S.H. Strauss, Software
Inspection Process, McGraw Hill, New York,
1994

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Background

• History
• Definitions
• Pithy Quotes

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

History -1

Inspection technique was developed by
Michael E. Fagan at IBM Kingston.

Fagan was a certified quality engineer and
studied the methods of Deming and Juran.

He used inspection on a SW project he was
managing in 72–74, in effect applying
industrial hardware quality methods to SW.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

History -2

It was very successful!

He reported results in a now famous 1976
paper.

The method became very popular in IBM,
although there was some resistance.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

History -3

AT&T Bell Labs started using technique in
1977.

In 1986, a major Bell Labs SW development
organization with 200 people reported its
experience with inspections:

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

History -4

• 14% productivity increase for a single
release

• better tracking and phasing
• early defect density data improved 10-fold
• staff credited inspection as an ‘‘important

influence on quality and productivity’’

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Definition -1

ANSI/IEEE Standard 729-1983 IEEE Standard
Glossary of SE Terminology defines
inspection as

“... a formal evaluation technique in which
software requirements, design, or code are
examined in detail by a person or group other
than the author to detect faults, violations of
development standards, and other
problems....”

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Definition -2

The ANSI/IEEE Standard 1028-1988 IEEE
Standard for Software Reviews and Audits
defines the objectives of SW inspection as

“to detect and identify software elements
defects. This is a rigorous, formal peer
examination that does the following:
(1) Verifies that the software element(s) satisfy

its specifications.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Definition -3

(2) Verifies that the software element(s)
conform to applicable standards.

(3) Identifies deviation from standards and
specifications.

(4) Collects software engineering data (for
example, defect and effort data).

(5) Does not examine alternatives or stylistic
issues.”

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Pithy Quotes -1

Mostly from Gilb & Graham:

Gilb & Graham’s Prevention Principle:
Prevention is better than cure.
or
An ounce of prevention is worth a pound of
cure.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Pithy Quotes -2

Santayana’s Principle:
Those who do not remember the past are
condemned to relive it.

The Sewing Principle:
A stitch in time saves nine.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Bugs Come Early and Stay

• Recall the myth
• Basic reality of bugs in design
• Costs of finding bugs
• Bugs probably required
• Requirements are difficult

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Recall the Myth

Bug

The word itself is a myth.

It implies that a bug is something that an
otherwise healthy program gets,

maybe as a result of contagion from sitting in
the same memory with other buggy
programs?!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Basic Reality of Bugs in Design -1

If a bug exists in a design, then if that design
is implemented, the bug will be in the code,
inevitably.

’Tis only logical!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Basic Reality of Bugs in Design -2

So the issue is not if there is a bug or if it will
be found, but ...

“By whom and when will the bug be found?”

• by developers before delivery
OR
• by customer after delivery

Former is better both for costs and company’s
image and customer good will.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Costs of Finding Bugs

Graphs on the next slides show that the latter
costs one to two orders of magnitude less.

Same and worse is true of hardware!!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

1

2

5

10

20

50

100

Preliminary
design

Detailed
design

Code and
debug

Integrate Validate Operation

Early Boehm Data

R
el

at
iv

e
co

st
 to

 c
or

re
ct

 e
rr

or

Phase in which error is detected

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Larger Software Projects

IBM-SSD

GTE

80%
Median (TRW Survey)
20%

SAFEGUARD

Smaller Software Projects

Boehm, 1980

1000

500

200

100

50

20

10

5

2

1
Acceptance

MaintenanceTestIntegration
Implementation

Design
Requirements
& Specification

Boehm 1981 Data

R
el

at
iv

e
co

st
 to

 fi
x

fa
ul

t

Phase in which fault was detected and fixed

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Boehm’s 1981 Numerical Data

Cost Stage
1 requirements & specification
3–6 design
10 implementation
15–40 integration
30–70 acceptance test
40–1000 operation/maintenance

(82 is IBM average)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

200

150

100

50

0
Reqs Specs Plan Design Code Integ Maint

1 2 3 4 10

30

Schach’s Summary
R

el
at

iv
e

co
st

 to
 fi

x
fa

ul
t

Phase in which fault is detected and fixed

200

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Bugs Probably Required

The bug that shows up after delivery to the
client was probably required into the software,
with probability 85%, according to Barry
Boehm’s data, and with probability 56%
according to DeMarco’s data.

Why?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Requirements are Difficult -1

Martin & Tsai’s study of requirement errors:

They conducted an experiment to identify
lifecycle stages in which requirement errors
are found.

An experienced user produced a polished 10-
page requirements document for a centralized
railroad traffic controller.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Requirements are Difficult -2

Ten 4-person teams of software engineers
were given the requirements document in
order to find errors in it.

The user believed that the teams would find
only 1 or 2 errors.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Requirements are Difficult -3

92 errors, some very serious, were found!

The average team found only 35.5 errors, i.e.,
it left 56.5 to be found downstream!

Many errors were found by only one team!

The errors of greatest severity were found by
the fewest teams!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Requirements are Difficult -4

CONCLUSIONS: Requirements are hard to get
right!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Errorer

This is a new term I invented to describe the
entire class of causes of errors. It includes all
the reasons that errors are put into programs,
ranging from sloppiness, through writing
something not intended, through not
understanding the phenomena involved,
through not understanding the user, to just
not being able to see the full picture.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs with Reviews

• Finding bugs earlier
• Sad fact
• True cost of reviews
• Panicky manager
• Pressman quotes Machiavelli

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs Earlier -1

So the question is: “How do you find the bugs
earlier?”

Answer: The same way as you find them later,
by testing! Nu?!

But but ... this means that you cannot find
them earlier than the implementation/coding
phase because you cannot run test cases
before you have code to run! Nu!?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs Earlier -2

Ah ... so let us redefine testing so that it can
be done on non-executable products like
requirements and designs

Testing includes reviewing (later we will
distinguish walkthroughs from inspections).

Let the good ol’ human keppele test the
requirements and designs.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs Earlier -3

But hey!!! Why not do this kind of testing on
executable products too?

After all, humans can see and understand
much more of a global picture than can a
computer, whose vision is very local and
stupid.

OK, OK, but what do you review against?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs Earlier -4

You review against the same thing that you
test against, i.e., an acceptability criterion, i.e,
• test data and expected results derived from

requirements, OR,
• that the product meets its requirements

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs Earlier -5

So reviews are considered the testing of non-
executable documents.

One should do reviews and traditional testing,
if possible, on all deliverable products of the
lifecycle, including test plans!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Finding Bugs Earlier -6

For test plans, the inspection is for coverage
and conformance
• that the test case input covers the input

domain
• that the expected output for each test case

conforms to the requirements

Deliverable products are not considered
delivered unless they have passed inspection
and tests as applicable.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sad Fact -1

There is never enough time to do it right, but
there is always enough time to fix it or to do it
over.

However, it always takes more time to fix it
than to have done it right or to do it over (not
even counting the fact that you have done it
twice).

When you fix it, it is always flaky and never
quite fixed.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sad Fact -2

“We don’t have time to do reviews |
walkthroughs | inspections!”

If so, then you don’t have time to finish the
project at all,

because without the reviews, you will send out
something unfinished if you send anything out
at all!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sad Fact -3

What is doing it right?

It is testing or reviewing every product of the
lifecycle at the time it is produced, before
going on to the next step.

It is fixing the bugs found in the reviewed
product before going on to the next step.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sad Fact -4

Why?

Because, as shown in the graphs a few slides
back, the cost to fix a bug grows dramatically
with any delay in its discovery or its fixing.

Contributing to this cost is the cost of redoing
anything mistakenly done as an implication of
the buggy part, i.e., of redoing anything that is
undone by the fix.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

True Cost of Reviews -1

Introducing reviews, in all likelihood,
decreases the total cost of a project.

Reviews find errors that are there already, so
no matter what, any error a review finds earlier
would have to be dealt with at some time,
possibly even after delivery of the software, if
there were no review.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

True Cost of Reviews -2

But, fixing the error now is considerably
cheaper than fixing it later (recall graph).

The question, then, is which is greater, the
time to review and fix it earlier or the time to
fix it later?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

True Cost of Reviews -3

A five-person review costs five person-days.

Consider an error that takes one person-day to
fix if found during the requirements phase:

Review + Review + Fix after
Fix Reqs Fix Impl Deliveryiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5+1 5+2 10

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

True Cost of Reviews -4

If n errors are found,

Review + Review + Fix after
Fix Reqs Fix Impl Deliveryiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5+n 5+2n 10n

Fix-after-delivery costs grow faster!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -1

There is a story of a Panicky Manager who
agreed to initiate inspections on the basis of
glowing predictions of improved productivity
and reduced errors such as on these slides
delivered by a slick software methods
salesperson

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -2

The software was estimated to require 50
KLOC.

The basic level of COCOMO estimates for an
embedded organization that 50 KLOC will
require about 60PM to build.

The IBM rule of thumb is that inspection adds
15% to the resources required, i.e., an
additional 9PM.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -3

“Nine PM! We don’t have that much available!
The development budget is for 60PM and not a
PSecond more!”

So where is the panicky manager going to get
the additional PM?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -4

The problem is that the panicky manager is
taking the inspection PMs out of the wrong
budget!

It should come out of the post-development
maintenance budget!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -5

Data show that it takes 1.58 PHour to find a
single defect in inspections.

There are 1188 PH in 9PM, so one can expect
to find 752 defects in 9PM.

It is known that it typically takes 9PH to fix a
defect found after delivery.

So these 752 defects will require 51PM to fix,
almost as long as it took to build the software.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -6

If the same defects are found earlier by
inspection, say no later than coding stage,
then it will take 1PH to fix each.

Therefore with inspections, these 752 defects
will require 5.7PM to fix.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -7

So,

W/O Inspection 60+51 = 111PM
W Inspection 60+9+5.7 = 74.7PM,

a savings over the lifecycle of 32%.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Panicky Manager -8

This does not always solve the problem of
where to get the additional resources,
because in some organizations, maintenance
is not budgeted; rather, developers are
pressed into service, borrowed from their next
projects.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Pressman quotes Machiavelli -1

“ ... some maladies, as doctors say, at the
beginning are easy to cure but difficult to
recognize ... but in the course of time ...
become easy to recognize but difficult to
cure.”

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Pressman quotes Pressman

Indeed! But we just don’t listen when it comes
to software. Every shred of evidence indicates
that formal technical reviews (for example,
inspections) result in fewer production bugs,
lower maintenance costs, and higher software
success rates. Yet we’re unwilling to plan the
effort required to recognize bugs in their early
stage, even though bugs found in the field
cost as much as 200 times more to correct.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

What Evidence?

We’ll look at some later, but first let’s attack
the psychology of resistance to reviews, and
then describe the procedures of doing reviews
in detail.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Psychological Impediments -1

• Heard during reviews
• Necessity of reviews and tests
• Implication of finding bug
• Definition of testing
• Implication of definition
• Happiness at discovering a bug

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Psychological Impediments -2

• Shame in discovering bugs
• Team ownership
• Exposing errors to superiors
• Adobe’s attitude
• Bug-finding tools
• A real tragedy

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Heard During Reviews

Complaining about the level of detail required
in preparation of reviewed documents:

“But that’s so easy to (fix | deal with)!”

True, but if so, then how come it’s not already
(fixed | dealt with)?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Necessity of Reviews and Tests

An old adage:

The work of the person or team that insists the
loudest that no review or test is needed is
most in need of review or tests.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Implication of Finding Bug -1

Mills says:

“The best way to know that you have found
the last bug is never to find the first bug.”

Any bug, even a tiny one, is a sign of an errorer
in the development, and an errorer leads to
lots of bugs, never just one.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Implication of Finding Bug -2
Studies have shown the following bug arrival
graph over the testing of one release.

Bu
gs

 fo
un

d
pe

r u
ni

t t
im

e

Time

That is, they tend to arrive in bunches if they
arrive at all.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Implication of Finding Bug -3

faults

0

1

Number of faults already found

Probability
of existence
of additional

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Implication of Finding Bug -4

Finding one bug is a symptom of an errorer.

There is no reason to expect that even a single
errorer causes only one bug.

This applies both to semantic and syntax
errors!

In particular, a syntax error is a symptom of a
semantic error.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Definition of Testing -1

Often hear:

Testing is confirming that program works.

or

Testing is demonstrating that errors are not
present.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Definition of Testing -2

Nonsense! wrong! bubbe meises!

Already know that:

Program testing can be used to show the
presence of errors but never their absence

— E.W. Dijkstra

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Definition of Testing -3

∴ The proper definition of testing is:

Testing is executing a program with the
intention of finding errors. — G.
Myers

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Implication of Definition

These quotes suggest a certain mind set for
testers.

They should be trying to find errors rather
than trying to show that there are none.

Goals have a bad habit of turning into reality!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Psychology of Testing -1

A program is its programmer’s baby!

Thus, trying to find errors in one’s own
program is like trying to find defects in one’s
own baby.

∴ It is best to have someone other than the
programmer doing the testing.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Psychology of Testing -2

Tester must be highly skilled, experienced
professional.

Helps if he or she possesses a diabolical mind

“Heh ... Heh ... Heh!” — Count
Dracula

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Psychology of Testing -3

It is well known that what is achieved in any
endeavor depends a lot on what are the goals.

Myers says:

If your goal is to show absence of errors, you
will not discover many.

If your goal is to show presence of errors, you
will discover large percentage of them.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Psychology of Testing -4

If you are trying to show the program correct,
your subconscious will manufacture safe test
cases.

∴ Tester should be someone other than the
programmer, who just loves bugs.

♥ ❤ ❥ ❦ ❧ ♥

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Happiness at Discovering a Bug

While it is painful to realize that your own
code has a bug, in terms of total effect, you
should be happier to find them before delivery
than after,

because, in any case, they will be found, if not
by you, but by your customer!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Shame in Discovering Bugs -1

There should be no shame in finding bugs in
your code during review.

The shame is releasing the code with the
same bugs.

I consider myself to be a good programmer; I
release only good code.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Shame in Discovering Bugs -2

But, I will let you in on a secret (sh! sh!)

When I am modifying previously written code,
fully 50% of the lines that I write have bugs.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Shame in Discovering Bugs -3

It’s very hard to do modify existing code right
because of unanticipated ripple effects.

Therefore, I use defense mechanisms, reviews
and line-by-line changing/testing.

I end up releasing mostly bug-free code.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Knuth has No Shame! -1

Donald E. Knuth wrote TEX starting in May
1977.

By Sept 1988, it had grown to 14 KLOC in
Pascal, and he sent in a final version of a “The
Errors of TEX” to be published in Software,
Practice & Experience, July 1989.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Knuth has No Shame! -2

He proudly reported 867 errors, including bad
requirements.

“But I see no harm in admitting the horrible
truth of my tendency to err, when such details
might shed light on the problem of writing
large programs. (Besides I am lucky enough to
have a secure job.)”

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Knuth has No Shame! -3

Knuth had published every version of the
source program and had a whole world of TEX
hackers as inspectors.

He paid a small (≈ $20) monetary reward to the
first person who found any particular error;
thus he had motivated, “professional”
inspectors!

All of this is described in open publications!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Team Ownership

It helps to change the philosophy of code
ownership.

The team owns the code, and while individuals
write parts, it is the team that will release and
stand behind the code.

This is a case of the team being more than the
sum of its individuals.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

When is a bug a bug?

In line with the team ownership philosophy, a
bug should not be considered a bug unless it
is in released code.

A bug inserted prior to inspections and
removed by inspection is considered the part
of the normal process of software
development.

Only bugs in released code are logged!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Exposing Errors to Superiors -1

But I don’t want my code reviewed because
then my manager will know that the bugs
found came from me!

First, it is necessary to adopt the team
ownership of code and bugs philosophy.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Exposing Errors to Superiors -2

Second, it is necessary that bugs found before
and during inspection not be considered bugs,
just hiccups!

Thirdly, the inspection procedure is adamant
in insisting that the line manager of the author
of the inspected product not attend the
inspection.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Adobe’s Attitude -1

I found the following pages in the manual for
Adobe’s Acrobat 2.0.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Adobe Acrobat 2.0 Credits

Engineering
Nabeel Al-Shamma

Ken Anderson
Kevin Binkley
Richard Cohn

Jim Cole
Gordon Dow

Mark Epperson
Nathan Graham

Ken Grant
Steve Hawley

Steve Herskovitz
Paul Holland

Karin Jurcevich
Bennett Leeds

Eoin MacDonell
William McCoy
Carl Orthlieb
Mike Ossesia
Allan Padgett

Daryoush Paknad
Mike Pell

Eswar Priyadarshan
Lindsay Sanford

Bob Wulff
Bob Ayers

Ron Gentile
Paul Rovner

Mike Schuster

Quality Assurance
Brian Acton

Ben Arbogast
John Brooks

Paul Burriesci
Tom Cane

Emily Clarke
Peter Crandall

Greg Christopher
Tonya Crutchfield

Jeff Doust
Christopher Eastwood

Rob Heiser
Thomas Lindemuth

Patty Mac
Steve McShurley
Tyrone Mendez

Will Naber
Denis Neema

Vuong Nguyen
Clare Park-Ha

Ravi Patil
Dina Sakahara

Jonathan Sjørdal
Deborah Smith
Denis Stroud
Brent Walker
Greg Walker
Rick Wulff
Ada Yue

Customer and Sales Support
Jamie Beverly
Chris Everett

Jim Gould
David Hackel

Erik Lammerding
Peter Mock
Ed Svoboda
JT Wheeler

Developer Support
Tim Bienz

John Ciccarelli
Mark Donohoe
Jeff Matulich
Carrie Requist
Tracey Stewart

International
Gerard Ho

Christina Liberman
Brigitte Ozello
Wiegert Tiere

Marketing Communications
Gail Blumberg
Linda Clarke

Molly Detwiler
Robin Edwards
Karen Gordon

Min Wang
Lisa Wehrer

Product Marketing
Rob Babcock
John Dawes
Pam Deziel
Laura Hull

Judy Mulvenna
Sally Phillips

Christopher Warnock
Jena Yankovich

Sales
Shelley Baker
Jeff Bartlett

Kathy Bauman
Gary Cosimini
Dianne Eckloff

Scott Fredrickson
Susan Flood
Joel Geraci

Paul Gerlach
John Henry Gross
Sandy Hamrick
Jim Hilsenrod

Victoria Holland
Rich Kennewick
Devra Kudeviz

Eric Lammerding
Tom McKeown
Clinton Nagy

Scot Reid
Frank Rubino
Ed Sanders Jr.
Chas Schoenig
Elaine Singer
Marcia Ware
Jeff Weldon

Training
Sharon Anderson

Sue Crissman
Necia Doughty
Sandra Kelch
Matt Nielsen

Sarah Rosenbaum

Special Thanks
Beverly Altschuler

Rick Brown
Chuck Geschke

John Kunze
Rebecca Michals

Kate Oliver
Pat Pane

John Place
Dave Pratt
Deb Triant

John Warnock

and last but not least

Adobe Technical Publications

Adobe Acrobat 2.0 Credits

Engineering
Nabeel Al-Shamma

Ken Anderson
Kevin Binkley
Richard Cohn

Jim Cole
Gordon Dow

Mark Epperson
Nathan Graham

Ken Grant
Steve Hawley

Steve Herskovitz
Paul Holland

Karin Jurcevich
Bennett Leeds

Eoin MacDonell
William McCoy
Carl Orthlieb
Mike Ossesia
Allan Padgett

Daryoush Paknad
Mike Pell

Eswar Priyadarshan
Lindsay Sanford

Bob Wulff
Bob Ayers

Ron Gentile
Paul Rovner

Mike Schuster

Quality Assurance
Brian Acton

Ben Arbogast
John Brooks

Paul Burriesci
Tom Cane

Emily Clarke
Peter Crandall

Greg Christopher
Tonya Crutchfield

Jeff Doust
Christopher Eastwood

Rob Heiser
Thomas Lindemuth

Patty Mac
Steve McShurley
Tyrone Mendez

Will Naber
Denis Neema

Vuong Nguyen
Clare Park-Ha

Ravi Patil
Dina Sakahara

Jonathan Sjørdal
Deborah Smith
Denis Stroud
Brent Walker
Greg Walker
Rick Wulff
Ada Yue

Customer and Sales Support
Jamie Beverly

Customer and Sales Support
Jamie Beverly
Chris Everett

Jim Gould
David Hackel

Erik Lammerding
Peter Mock
Ed Svoboda
JT Wheeler

Developer Support
Tim Bienz

John Ciccarelli
Mark Donohoe
Jeff Matulich
Carrie Requist
Tracey Stewart

International
Gerard Ho

Christina Liberman
Brigitte Ozello
Wiegert Tiere

Marketing Communications
Gail Blumberg
Linda Clarke

Molly Detwiler
Robin Edwards
Karen Gordon

Min Wang
Lisa Wehrer

Product Marketing
Rob Babcock
John Dawes
Pam Deziel
Laura Hull

Judy Mulvenna
Sally Phillips

Christopher Warnock
Jena Yankovich

Sales
Shelley Baker
Jeff Bartlett

Kathy Bauman
Gary Cosimini
Dianne Eckloff

Scott Fredrickson
Susan Flood
Joel Geraci

Paul Gerlach
John Henry Gross
Sandy Hamrick
Jim Hilsenrod

Victoria Holland
Rich Kennewick
Devra Kudeviz

Eric Lammerding
Tom McKeown
Clinton Nagy

Scot Reid
Frank Rubino
Ed Sanders Jr.

Lisa Wehrer

Product Marketing
Rob Babcock
John Dawes
Pam Deziel
Laura Hull

Judy Mulvenna
Sally Phillips

Christopher Warnock
Jena Yankovich

Sales
Shelley Baker
Jeff Bartlett

Kathy Bauman
Gary Cosimini
Dianne Eckloff

Scott Fredrickson
Susan Flood
Joel Geraci

Paul Gerlach
John Henry Gross
Sandy Hamrick
Jim Hilsenrod

Victoria Holland
Rich Kennewick
Devra Kudeviz

Eric Lammerding
Tom McKeown
Clinton Nagy

Scot Reid
Frank Rubino
Ed Sanders Jr.
Chas Schoenig
Elaine Singer
Marcia Ware
Jeff Weldon

Training
Sharon Anderson

Sue Crissman
Necia Doughty
Sandra Kelch
Matt Nielsen

Sarah Rosenbaum

Special Thanks
Beverly Altschuler

Rick Brown
Chuck Geschke

John Kunze
Rebecca Michals

Kate Oliver
Pat Pane

John Place
Dave Pratt
Deb Triant

John Warnock

and last but not least

Adobe Technical Publications

Adobe’s Attitude -2

Notice that:

• the two biggest groups are Development
(Engineering) and the Quality Assurance

• the sizes of D and QA are about the same,
(In fact, QA has one more than D!)

• D and QA have no members in common
• D and QA get essentially equal and top

billing
• Adobe products are good!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Bug-Finding Tools? -1

Why not let tools find defects in the code for
us?

First it’s not clear that tools can find many
errors beyond syntactic or so-called static
semantic (the good ’ol halting problem rears
its ugly head!)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Bug-Finding Tools? -2

The Gilb & Graham Tools for Fools Principle:

Automated tools should be used to find
problems, but not if you must delay
detection until the fixing costs outweigh
the advantage of automation.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

A Real Tragedy -1

At this company I know, among the dozen
projects they had going, only one project met
its final deadline.

Nearly all of these deadlines had been slipped
from earlier impossible deadlines.

The one project that met its deadline was the
one that I helped out by moderating
inspections for it.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

A Real Tragedy -2

I had been called in by the Marketing VP to
use inspections as a means to help a project
make a one-month deadline for a trade show,
at which they had committed to announce and
demonstrate the product.

Against the wishes of the President, the VP of
R&D, the Chief Programmer, and all the
programmers, I instituted an inspection of the
product.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

A Real Tragedy -3

Even though the Chief Programmer and the
programmers were dragged kicking and
screaming into the inspection, the first
inspection found a whole lot of bugs,
including one that would have killed the
product and would have cost an unspecifiable
amount of time to find and fix (so said a
development consultant observing the
project).

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

A Real Tragedy -4

A second inspection failed to find any new
problems and the project finished on time, the
product was announced and demonstrated at
the trade show, and it won an award at the
trade show!

Sadly, the President, the VP of R&D stood
behind the Chief Programmer, who was
opposed to inspection despite the success,
and refused my offer to start a regular
inspection program.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

A Real Tragedy -5

The company never met another deadline and
is in complete doldrums, because it has not
been able to meet the demands of the market
before its competitors did.

A real tragedy.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Procedures for Doing Reviews

Two kinds of reviews

g walkthroughs

g inspections

Latter more formal than first.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Outline of Discussion

g Common elements
g Differences
g Walkthroughs
g Inspections

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Common Elements

Both:

g Review is an in-depth examination of some
work product by a team of reviewers.

g Product is anything produced for the
lifecycle, i.e., requirements, plans, design,
code, test cases, documentation, manuals,
everything!

g No meeting is more than 2 hours.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Common Elements

g The focus is on finding errors in the
product,
- not on correcting them, and
- not in finding fault in producer of

product.

g It is essential that it not be used for
employee performance evaluation, either of
producer or reviewers.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Not for Appraisal

This last point is critical.

If reviews are as effective in finding errors as
will be shown, then any manager that uses
them for evaluating producer or reviewers will
kill the goose that lays the golden egg!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Differences -1

Atmosphere:

W: informal

I: formal

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Differences -2

Reviewers:

W: experts in the domain

I: trained, professional inspectors

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspectors Not Domain Experts? -1

But, but, ..., how can someone who does not
understand the program be expected to find
anything?

This is such waste of time, making someone
who knows nothing about the program
examine it carefully when someone who
knows it can find the errors much much
quicker.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspectors Not Domain Experts? -2

Well, the data, time and time again, do show
that inspections, as defined above, are
significantly more effective in finding errors
than walkthroughs, as defined above.

So, evidently, the lack of domain knowledge of
the inspectors is not a problem.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspectors Not Domain Experts? -3

There is other evidence that in some
circumstances, a person who does not know
the domain is more effective than someone
who does, because the former is less likely
than the latter to fall into the tacit assumption
tar pit.

An every-day occurrence of this phenomenon
is that someone who has never seen an article
finds more errors in proof-reading an article or
book than does the author.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspectors Not Domain Experts? -4

I know from one experience I had participating
in the inspection of requirements and design
of some networking software that this
phenomenon applies to inspection.

I came to the meeting prepared with a 20 page
list of possible problems in the document,
while the members of the development team
participating in the inspection came with none
(they thought there were no problems).

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspectors Not Domain Experts? -5

In this list were 5 really serious problems
which the development team members
recognized instantly when I asked seemingly
innocent questions like “Why is this variable
used here, but not here in this other module
that #includes the module defining the
variable?”

In other words, I found errors that had been
just under the noses of the development team.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Differences -3

Subject of review:

W: correctness of product, as seen by experts

I: correctness of product, according to
checklist of items to be examined

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Differences -4

Leader of discussion and session controller:

W: producer of product

I: official moderator of review team

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Walkthroughs

The producer presents product (if code, then
also its documentation) and the reviewers
comment on the correctness of the product (if
code, also consistency with documentation).

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspections

• Roles
• Checklists
• Steps
• Users at Inspections
• Caveats

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Roles

Inspection team members have specific roles:
g moderator
g secretary (can be same as moderator)
g inspectors (2)
g producer(s)

- designer
- programmer

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists -1

Product is examined relative to specific
checklists, e.g.,

g compliance to standards
g domain correctness
g consistency with requirement items
g language usage
g use-declaration type consistency

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists -2

g invocation interface consistency
- formal-actual correspondence
- return value

g use of correct dimensions (e.g. °C vs °F)
g comment-code consistency
g avoidance of errors in historical list

(frequency ranked)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -1

5 Steps:

1. Overview given by producers to reviewers;
at end of session, the relevant documents
are distributed to reviewers (could be
combined with a walkthrough!)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -2

2. Reviewers prepare individually for
inspection, try to understand the product in
detail; should be aided by checklists;
ranking lists by importance allows
focusing on most important potential
errors first. (Maybe each inspector can
have a different checklist.)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -3

3. Inspection session itself: moderator walks
through the product line by line, asking
inspectors for observed problems
(sometimes hearing another’s fault reports
triggers discovery of more); within one
day, moderator produces written report on
all faults found

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -4

4. Rework: the producer fixes the product
according to list of faults in report

The producer might ask for assistance in
solving the problem.

Gilb & Graham suggest brainstorming as a
way to get free flowing of ideas that might
provide a solution.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -5

5. Follow up: the moderator makes sure that
all faults have been fixed and calls another
inspection if more than 5% of the product
has been modified

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -6

In my opinion, we must always do one more
inspection than might seem necessary, i.e.,
until inspection yields no new errors.

It is not safe to skip this last inspection, even
if there was only one itty-bitty, tiny little ol’ error; its
fixing might introduce a great big, ferocious
error!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Users at Inspections -1

It may also be useful to have a user as part of
the inspection team, especially if a
requirements document is being inspected,
but also even if code is being inspected.

The first Airbus crash resulted from the
computer shutting down the engine while the
plane was in the air, as a result of an
inconsistent state.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Users at Inspections -2

The fix was not to allow the engine to shut
down if the plane is still in the air.

A later crash came when the pilot could not
turn off the engine in a plane that had just
landed!????

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Users at Inspections -3

The way the software detected that the plane
was on the ground is by seeing that the
wheels are spinning; if the wheels are not
spinning, the plane is still in the air.

The crash happened when the plane landed on
a wet runway; the wheels were not spinning
and the engine would not turn off.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Users at Inspections -4

So the software was changed to use pressure
on the wheels to determine if the wheel is on
the ground and the definition that the plane is
on the ground if both wheels are on the
ground.

The next slanted landing resulted in a crash
because the pilot could not turn off the engine
soon enough.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Users at Inspections -5

All of these problems could have been
avoided by having users, i.e., experienced
pilots, in the inspection teams.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Caveats

• Team members must read product before
meeting.

• Meeting must not be longer than two hours.
• Author’s boss cannot be present at the

meeting.
• Inspectors must not consider solutions

during meeting.
• Inspectors must not attack author; they can

criticize product.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Experimental Evidence -1

Experiments over several projects have
shown that inspections can be 4 times more
effective than traditional testing and 2 times
more effective than walkthroughs in finding
errors.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Experimental Evidence -2

• Effectiveness in finding bugs
• Effectiveness & needed resources
• Cost reduction
• Time reduction
• Defect reduction
• Increased productivity
• Unmentioned in ALL Reports
• JPL study
• Inspection meetings
• Programmers’ surprise
• Reeve’s rule of thumb

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -1

According to experiments by Fagan reported
in ’76, ...

67% of all errors eventually found for a
particular system, were found by code
inspection before unit testing, and

for a similar system, informal walkthroughs
were used instead of inspection; the inspected
system had 38% fewer errors in the first seven
months of operation than the walkedthrough
system.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -2

Jones reported in 1977, that ...

He examined the history of 10 million lines of
code.

Inspection removed 85% of the total errors
found.

No other technique, walkthrough, testing, etc.
found even 50%.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -3

Jones reported in 1978, that ...

Inspection removed 70% of the total errors
found in another set of projects.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -4a

Kitchenham reports that at ICL, in one project
57.7% of the defects were found in inspections
and only 4.1% of them were found in in-house
use. The normal rates at the time was for
11.2% of the defects to be found in in-house
use.

The cost of finding one defect in design
inspection was 1.58 work-hours. The cost of
finding one defect without inspection was 8.47
work-hours, more than 5 times more.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -4b

The total proportion of the development effort
devoted to inspections was only 6%.

Kitchenham feels that these figure would have
been better if better training in inspection had
been given.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -5a

Grady reported in 1994, HP’s data over several
years and projects:

The average effectiveness of code
reading/code inspections was 4.4 times better
than that of any other test technique.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness in Finding Bugs -5b

Effectiveness
Testing (Defects found

Technique per hour)iiiiiiiiiiiiiiiiiiiiiiiiiiiii
Regular Use 0.210
Black Box 0.282
Glass Box 0.322
Reading/ 1.057
Inspections

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Effectiveness & Needed Resources

In another later experiment, Fagan found that
...,

82% of all errors eventually detected in
another particular system were found by
design and code inspection before unit
testing.

He determined that 25% less programmer
resources were needed than were estimated
by a technique that had been tuned to the
organization.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Cost Reduction -1

Crossman reported in 1982, that ...

Code inspections led to a 95% reduction in
maintenance costs, that were predicted by an
experience-tuned estimation procedure.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Cost Reduction -2a

Gilb & Graham report:

A production planning system consisted of
800 programs.

In the middle of development, inspection was
stopped after 400 of them had been inspected,
because people did not see the effect as a
result of not keeping data.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Cost Reduction -2b

One year later, the maintenance cost of the
programs was measured, and ...

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Cost Reduction -2c

The maintenance cost of the 400 inspection-
managed programs was between 0.6 and 0.7
minutes per line of code per year.

The maintenance cost of the 400 non-
inspected programs was 7 minutes per line of
code per year.

A 10 fold decrease with inspection!!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Cost Reduction -3

Gilb & Graham report:

A bank’s software development department
compared the maintenance costs of 88,000
lines of inspected COBOL code with those of
900,000 lines of non-inspected COBOL code:

The inspected code cost 28 times less to
maintain than the non-inspected code.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Cost Reduction -4

Don O’Neill, in “National Software Quality
Experiment: Results 1992-1995” Proceedings
of the 8th Annual Software Technology
Conference, 1996, reports that companies that
use inspections have had a return on
investment ranging from four to eight dollars
saved for every dollar spent.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Time Reduction -1

Gilb & Graham report that typical net savings
for project development using inspections are
35% to 50%.

In 1976, Fagan reported a 25% reduction of
schedule plans from a predicted 62
programmer days to 46.5 programmer days
including the inspection. (and if, as usual,
estimates normally err on the optimistic side,
this is even more amazing)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Time Reduction -2

In 1975, Rodney Larson reported that
inspecting test plans, designs and cases
saved 85% of the time normally needed do
tests.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Defect Reduction -1

In 1980 IBM had the 11 development stages of
a large, 1⁄2M line networked operating system
inspected.

Their expectation at the time was for about
800 bugs in trial site operation.

They got only 8.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Defect Reduction -2

The 500K-line, inspected space shuttle
software produced by IBM FSD had zero
mission defects for the last 6 of the 9 1985
missions.

Moreover, this SW is tailored for the next
mission in between missions.

Thus inspection helped eliminate ripple
effects of maintenance changes.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Increased Productivity -1

Fagan’s original article reports a 23% increase
in coding productivity as a result of
inspection.

He later reports a 10% productivity increase
with informal moderator training, a 25%
increase with formal moderator training and
design change control, and a 40% increase by
adding code change control, inspection of
tests and fixes, and test defect tracking.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Increased Productivity -2a

IBM FSD collects 14 pages of parameters after
each project.

In a 1977 report by Waltston and Felix, 30 FSD
projects using inspection were compared to
about 30 similar FSD projects using the older
structured walkthrough technique.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Increased Productivity -2b

The median net delivered lines of non-
comment code productivity rate per work-
month was:
• 300 for the 30 inspection-managed projects
• 144 for the 30 structured-walkthrough-

managed projects

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -1

JPL is funded by NASA to conduct its
unmanned interplanetary space program.

Inspections were introduced in 1987 to
improve software quality by detecting errors
as early in the development lifecycle as
possible.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -2

JPL basically followed the Faigin process:

• inspections on all documents: software
requirements, architectural design, detail
design, source code, test plans, and test
procedures

• a checklist tailored to JPL’s needs was
produced for each document type

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -3

One mahor enhancement, a third hour to the
inspection meeting, after the standard two-
hour search for problems, to discuss possible
solutions and clear up issues raised in the
search meeting.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -4

They also introduced data collection to gather
data which is the basis for this study.

J.C. Kelly, J.S. Sherif, and J. Hops “An
Analysis of Defect Densities Found During
Software Inspections”, Journal of Systems
and Software, 17:111-117, 1992.

Data were collected on 203 inspections
performed on 5 software-intensive projects
between February, 1987 and April, 1990.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -5

Nearly all team members were trained in a 1.5
day course.

Although projects used Ada, C, and Simula, on
16% of the inspections were performed on
code.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -6

1. Increasing the number of pages inspected
at once decreases the number of defects
found.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -7

2. Significantly more defects were found per
page at the earlier phases of the lifecyle.
The highest density was observed during
requirements inspections. Fitting data
shows:

Defects/Page = 3.19e − 0.61t

where t = 1, 2, 3, 4 for SWR, AD, DD, SC
respectively.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -8

3. The cost in staff hours to find and fix
defects was consistently low across all
types of inspections, on average 1.1 hours
to find a defect and .5 hours to fix and
check it, compared with 5-17 hours
required to fix defects found during formal
testing.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

JPL Study -9

4. A variety of defects are found through
inspections, with defects in clarity, logic,
completeness, consistency, and
functionality being the most prevalent.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspection Meetings -1

One problem that a lot of places report is that
of project delay due to difficulties scheduling
the inspection meeting.

A. Porter, H. Siy, and L. Votta report in a ICSE
’97 paper that the inspection interval, i.e., the
calendar time needed to complete the
inspection, is significantly longer than the
work time needed to complete the inspection,
leading to significant delays in projects.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspection Meetings -2

In any busy place, it is difficult to find a
common unscheduled two-hour slot for the
inspection meeting.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Anywhere, Anytime Inspections -1

Perich, Perry, Porter, Votta and Wade in their
ICSE ’97 paper suggest the use of the WWW to
allow asynchronous inspection meetings that
seem to generate enough synergy between the
inspectors to match the effectiveness of
inspection meetings.

Instead of having meetings, each inspector
adds his comments to a Web page maintained
on the company’s intranet.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Anywhere, Anytime Inspections -2

The synergy happens because each inspector
gets to read previously added comments and
to build on them. Each inspector is urged to
visit the Web site more than once so that all
inspectors get to read the comments of all
others.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Anywhere, Anytime Inspections -3

Perich, Perry, Porter, Votta and Wade report
that the cost savings from just the reduction
in paper work and the time savings from the
reduction in distribution interval of the
inspection package (sometimes involving
international mailings) have been substantial.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Anywhere, Anytime Inspections -4

Since there is no need to schedule a common
meeting time, the asynchronous approach
reduces the inspection interval significantly,
leading to even more cost savings.

They also report that the new process is at
least as effective in terms of defect detection
effectiveness as synchronous inspection
meetings.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Value of Inspection Meetings

Indeed, experiments by Johnson and Tjahjono
reported in ICSE ’97 failed to show that
inspection meetings are more effective than
having inspectors file their independently
written private reports.

So with the cost reduction and inspection
interval reduction coming from not having
inspection meetings, many places are
beginning to look at substitutes for inspection
meetings.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Unmentioned in ALL Reports

What about the remaining 33%-15% errors not
found by inspections?

The customers found the rest! sigh!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Programmers’ Surprise

Gilb & Graham report:

One inspection user, with a very large
systems programming project, had finished
three weeks before the official deadline. They
didn’t believe it themselves. So, they spent
two and a half weeks checking to see what
they had missed. They found no defects
(indeed there were virtually none, as it turned
out) and handed [the program] over officially
three days early.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Reeve’s Rule of Thumb

As a rule of thumb, each major defect found at
inspection will save nine-hours of downstream
correction effort.

The reported ranged of average effort
downstream to repair defects that could have
been caught by inspection is from 4 (Gilb
1988) to 30 hours (Doolan 1992),

and the average effort downstream to repair
defects caught by inspection is 9.3 hours
(Reeve 1991)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Why Inspections Work

These are my feelings as to why they work!

• Why is inspection so good?
• Inspection before compilation
• The power of water coolers
• Time estimation and testing
• Sources of inspection savings
• Summary of direct savings
• Indirect benefits to management
• Costs of inspection

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Why is Inspection So Good? -1

Why are inspections better than traditional
testing?

g People think.
g Test cases do not.

People see implications of even supposedly
good code.

People see reasons for errors that they find.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Why is Inspection So Good? -2

A test case exposes an error without exposing
reasons; a person must then try to find the
reasons and has to jump into the middle of
things rather than having had the gentle
introduction of having examined every line of
the code.

Also, multiple heads are better than one!

Most test case examination is done by one
person, privately in his or her office!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Why is Inspection So Good? -3

Tony Hoare put it nicely.

“It’s much easier to find bugs in a line of
reasoning than in a line of code.”

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Why is Inspection So Good? -4

Also examining code 4 times is bound to find
more errors than 1 time.

No Inspection Inspectioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
writing writing

walkthrough
private reading
public meeting

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspection before Compilation -1

Some insist on inspections before submission
to a compiler.

Why not just let the compiler find most errors?

Each syntax error can be a symptom of a
serious semantic error.

The compiler finds the syntax error but not the
semantic error.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspection before Compilation -2

Only people can find semantic errors.

If you fix syntax errors with the aid of a
compiler without seriously considering
semantic implications, you can end up totally
overlooking a serious semantic error.

Ah, but why not just have the person running
the compiler think?

Again, multiple heads are better than one.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Inspection before Compilation -3

Also, there is a strong temptation to rush
through the compilation, reducing the
effectiveness of the thinking.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

The Power of Water Coolers -1

Did you ever have the experience?

You’ve been running test cases and have been
trying to track down this one nasty bug for
days.

You’re exhausted and are standing next to the
water cooler kibbitzing with your fellow
programmers and bitching about your stupid
program.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

The Power of Water Coolers -2

Someone says, “What’s the problem?”

You start explaining it, and bingo, eureka, you
or the someone else sees the solution!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

The Power of Water Coolers -3

There’s a story told of a manager that tried to
put an end to everyone’s goofing off by the
water cooler, by having the water cooler
removed.

The manager saw the incidence of errors in
delivered software go up!

The system staff started complaining about a
sudden increase in a demand for assistance,
an increase that they could not handle.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

The Power of Water Coolers -4

An efficiency expert identified that the water
cooler was not really for goofing off, but was
an essential debugging tool!

After the water cooler was brought back,
things went back to normal.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Time Estimation and Testing

We now consider the problem of allocating
sufficient time for testing in a project plan.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

A Typical Pert Chart

A simple SW development Pert chart:

require-
ments

test
plan

test
data

test
drivers

product
test

ment

start

design
docu-

finishcode

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Criticality of Slippage -1

Look at Pert Chart!

What step is most critical to start on time to
finish on time?

What step is most critical to estimate its
duration accurately?

That is, for which step is a schedule slippage
impossible to recover from?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Criticality of Slippage -2

product test!

Because it is one of the last two and the other
one is not critical to the delivery on time.

Surprised?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Criticality of Slippage -3

Having reviews throughout the lifecycle
reduces the risk of slippage inherent in having
a single or very few testing phases, as is the
case with having only unit and integration
testing.

When inspections remove most of the defects,
testing goes more smoothly, as there are
fewer defects to find.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sources of Inspection Savings -1

Savings comes from avoiding following costs:

• downstream defect detection costs, i.e.,
module tests, integration tests, field tests,
etc

• overtime costs during frantic last
days/weeks before deadlines

• re-testing necessitated by defect fixes

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Sources of Inspection Savings -2

• field service to deal with defects found by
customers

• costs due to high turnover of overworked,
burned-out professionals, i.e., recruitment,
moving, training, etc.

• public relations and marketing costs to
compensate for poor product quality

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Summary of Direct Savings

• 30%–100% net productivity increases
• 10%–30% net timescale reductions
• 5 to 10 times reduction in test execution

costs and timescale
• order of magnitude reduction in

maintenance costs
• nearly automatic improvement of SE

quality and product quality
• early or on-time delivery of systems

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Indirect Benefits to Management -1

Management gets what it inspects, not what it
expects! (Gilb)

• It gets fuller data about defects and
product quality and the progress of the
development.

• It gets satisfaction of ISO 9000 (and other)
quality standards.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Indirect Benefits to Management -2

• It is able to encourage developers to take
more responsibility for the quality of their
own work,

partially because it will not have to put out
as many fires with customers.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Costs of Inspection -1

Start up costs include costs of

• buy in
• training
• making checklists
• getting used to doing inspections

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Costs of Inspection -2

Ongoing Inspection Costs:

• Inspections add 10–15% to the costs of
development.

• Besides the inspections themselves,
people will end up spending more time
preparing their documents for inspections,
but that will pay off in the long run.

• Also time must be allocated to allow people
to do inspections properly.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Starting an Inspection Program

“OK, OK, you’ve convinced me! So now what
do we do?”

Must start an inspection program!

• Steps
• Checklists
• What to inspect
• Deal that cannot be refused
• Best thing about inspection

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -1

1. Selling and buy-in

2. Training
g aimed at management, programmers,

and inspectors
g explaining each’s role
g explaining procedures
g explaining checklists
g supervised practice inspections of

- instructor’s product
- each other’s product

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -2

3. Recruit inspectors, people whose job
definitions include all that is necessary to
carry out inspections, including
preparation for and attendance of
meetings, code reading, etc.

4. Do it!

5. Inspect and evaluate the inspection
process for improvement.

6. Improve it!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -3

Doing it involves

g deciding what products (documents) are to
be inspected,

g making checklists for these products, and
g making the 5 inspection steps part of the

schedule for each product, together with
supporting memos, signoffs, and whatever
else the organization requires for any other
milestone.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Steps -4

Don O’Neill, in “Issues in Software Inspection”
IEEE SW January, 1997, reports that once you
adopt software inspection and complete
training, your organization can detect 50% of
the defects present. To achieve expert
practice, a detection rate of 60 to 90 percent,
can take from 12 to 18 months. After 10 years
of practice, IBM reported an 83% and AT&T
reported a 92% defect detection rate.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists -1

For example, if code is to be checked, the
checklist can include items such as

g compliance to standards
g domain correctness
g consistency with requirement items
g language usage
g use-declaration type consistency

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists -2

g invocation interface consistency
- formal-actual correspondence
- return value

g use of correct dimensions (e.g. °C vs °F)
g comment-code consistency
g avoidance of errors in historical list

(frequency ranked)

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists -3

The Ebenau and Strauss book is chock full of
good checklists for a wide variety of
documents.

The Gilb and Graham book have some too.

You will no doubt find others.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -1

It has become clear in retrospect that the
checklists are the key!

An inspection is as good as its checklist,
whether explicit or implicit (i.e., in the
inspector’s mind).

Sometimes, how powerful inspections can be
becomes apparent only after seeing the
checklists.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -2

Thus, it is critical to turn these implicit
checklists into explicit.

It’s sort of like codifying expert knowledge
from a human expert for an expert system.

To produce a checklist for inspecting modified
code for ripple effects, I thought about how I
desk check for this problem and wrote down
the danger signs I look for and the questions I
ask as I find all uses of any identifier
participating in modified code.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -3

But then the question naturally comes up!

Why bother with inspections?

Why not just give the programmers the
checklists and have them inspect the code
themselves?

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -4

It’s the same as proofreading a book or article.

Most authors know all the grammar and
language rules.

Most authors know what they are trying to
say.

But in all the busy worrying about content and
everything else that goes into making good
writing, authors make mistakes.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -5

When it comes to proofreading, the worst
person to do it is the author.

He or she sees what he or she has learned to
expect and not what is actually there.

Only another person can do an adequate job
of proofreading.

So inspection by another party is necessary.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -6

However, the best procedure is for the
checklist to be known by all.

The developers strive their damndest, through
discipline and desk checking, to give products
to inspection for which the inspection fails
(i.e., the inspectors find no errors!).

The inspectors strive their damndest to
succeed.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklists are the Key -7

Sometimes the developers win, sometimes the
inspectors win, and at all times, the team
wins!

Inspections work best when everyone is trying
to make them unnecessary

Unfortunately, the real threat of inspection
appears to be necessary to make people work
like this.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklist Effectiveness -1

Which is better?

• Inspectors have no checklist.
• Inspectors have checklist.

With a checklist one is less likely to overlook
an item on the list, but with a checklist, one
might overlook something not on the list in
focusing on the list.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklist Effectiveness -2

Which is better?

• Each inspector has responsibility for
specific classes of faults.

• All inspectors search for whatever faults
they can find.

With specific domains covered, faults in those
domains are less likely to be missed, but with
specific domains covered, faults not in any
anticipated domain are more likely to be
missed.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklist Effectiveness -3

The three main approaches that are use are
combinations:

1. Ad Hoc: no checklist and all inspectors
search for whatever they can find.

2. Checklist: checklist and all inspectors
search for whatever they can find.

3. Scenario: checklist and each inspector has
responsibility for specific classes of faults.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklist Effectiveness -4

A study by A. Porter and L. Votta has shown

1. The fault detection rate when using
Scenarios was superior to that obtained
using Ad Hoc or Checklist methods, by
roughly 35%

2. Scenarios helped reviewers focus on
specific fault classes and, in comparison to
Ad Hoc or Checklist methods, did not
compromise their ability to detect other
classes of faults.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Checklist Effectiveness -5

3. The Checklist method, the industry
standard, was no more effective than the
Ad Hoc method.

4. On the average, collection (inspection)
meetings contributed nothing to fault
detection effectiveness.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

What to Inspect -1

In principle, any product can be inspected,
even an inspection plan-and-checklist itself;
all you need is a checklist of what to look for
based on some definition of quality or
correctness of the product.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

What to Inspect -2

Any product that can give you trouble can be
subjected to inspection.

For example, if you know that you have
trouble correcting bugs without introducing
new bugs, so initiate inspections of bug
correction strategies, i.e., of the modifications
to the whole program that purport to fix a bug,
and get multiple minds helping to find ripple
effects.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

But how do you inspect that ? -1

Sometimes people have difficulty seeing how
to inspect a deliverable that does not
represent a complete solution, but is just, say
a preliminary design.

I claim that any deliverable product is
inspectable relative to the very criteria by
which it is decided whether or not to deliver it
at this time.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

But how do you inspect that ? -2

If the author of the product can identify a point
at which he or she knows the product is ready
to be seen by others and before that point it
was not, then the unspoken criteria, the basis
for his or her pride upon delivery of a good
product, are the criteria by which the product
is to be inspected.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

But how do you inspect that ? -3

When I produce a preliminary design, even
though it is purposely incomplete, there is a
certain point at which it is complete enough to
serve its purpose as a preliminary design.
Whether the preliminary design meets its
purpose can be judged by others and is thus
inspectable.

The checklist is a verbalization of these
unspoken criteria, of whether the product
meets its purpose.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Deal that Cannot Be Refused -1

Gilb & Graham tell the story of one project
manager that pulled a neat trick to get people
to buy into inspection and to defuse potential
arguments that people were not given enough
time to do proper inspections.

He simply declared all deadlines extended by
15% for any project that agreed to do
inspections.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Deal that Cannot Be Refused -2

15% was simply the historical gross cost at
IBM of doing full inspections.

He ended up winning more than he gave away,
as they used only 4–5% additional time!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Best Thing About Inspection -1

The best thing about instigating an inspection
program, as a means to improve software
quality and productivity is that:

It can be introduced without having to change
anything else you’re doing.

You can piggyback it on your current process
and methods.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Best Thing About Inspection -2

You will notice an immediate improvement
anyway.

Furthermore, as you build up a friendly
competition to deliver for inspection only
products that cause the inspection team to
fail, you will begin to notice other ways to
improve your process and methods.

Only, now the motivation to try new processes
and methods will come from within.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Evaluating Program’s Effectiveness

There are two ways to evaluate effectiveness
of your inspection program:

• feelings
• data

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Feelings

Programmers know when they are doing
better!

After all, students know how they’ve done on
their bagrut exams, baccalaureate exams,
Regent’s exams, SATs, GREs, etc. even
before they get the results, in fact even before
they leave the room.

But feelings can be deceiving, so ... get
DATA!!!

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Data -1

Since the purpose of inspections is to spend a
little extra development resources to
significantly reduce defects and total lifecycle
resources, the important data to collect for
each project are:

• resource expenditures
• defect reports (but only after inspection!),

particularly after delivery

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Data -2

A primary concern is to show pay-off, i.e., ROI,
and to show it as soon as possible.

Most organizations do keep these items of
data even if they are not collecting them to
track inspections, just for budgeting and
accountability purposes.

So the organization must start collecting these
data now, and it must try to dig these data up
for past projects.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Data -3

If it can find the data for the past projects,
then it will be able to demonstrate
effectiveness sooner.

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Conclusion -1

We covered:

• Sources of information
• Background
• Bugs come early and stay
• Finding bugs with reviews
• Psychological impediments

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

Conclusion -2

• Procedures for doing reviews
• Experimental evidence
• Why inspections work
• Starting an inspection program
• Evaluating effectiveness of program

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

 1995 Daniel M. Berry Software Enginering Testing, Reviews, and Inspection

