
OO Development and
Maintenance
Complexity

Daniel M. Berry
based on a paper by Eliezer Kantorowitz

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 1



Traditional Complexity Measures

Traditionally,

g Time Complexity
g Space Complexity
g Both use theoretical measures, e.g., O (N 2),

where N is some measure of input size.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 2



Algorithm Optimization

Algorithm optimization for time and/or space
was a key concern back in good old days
when the computer was the most expensive
part of a computer installation, when
machines were several orders of magnitude
slower and smaller than the hand-held
computer of today.

The traditional measures grew out of our
attempt to understand algorithms and how to
optimize them.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 3



Nowadays

Nowadays, programmers are the most
expensive part of a computer installation.

Programmmers spend a small part of their
time developing new code and a large part of
their time maintaining legacy code.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 4



What We Should Measure

Therefore, we should measure the cost of
development and maintenance complexity,
and should be measuring program complexity
relative to programming difficulty.

We would also like to use these complexities
to predict the costs of program development
and maintenance, the costs including, time to
program, number of programmers needed, i.e.,
the time and space of development!

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 5



Extant Complexity Measures

There are a number of program complexity
measures that purport to measure
development and maintenance difficulty,
including:

g Lines of Code (LOCs)
g Cyclomatic (McCabe)
g Software Physics (Halstead)

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 6



Extant Measures, Cont’d

See also, e.g.,

N. E. Fenton, Software Metrics, a Rigorous
Approach, Chapman Hall, NY, 1991

B. Kitchenham, “Software Development Cost
Models”, Software Reliability Handbook, P.
Rook (Ed), pp. 487–517, Elsevier, 1990.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 7



Extant Measures, Cont’d

These measures are not very good.

There are always lots of anomalous
exceptions, e.g., two programs of the same
length, one with lots of nested loops and
conditionals and one with no branches at all,
are not of equal difficulty to program,
understand, and maintain, yet they have the
same number of LOCs.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 8



Extant Measures, Cont’d

While experimental data have shown that
there is a positive correlation between most of
these measures and actual costs, the
correlation is not good enough to use in
prediction.

About all that can be said is that lengthening a
program drives its costs up.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 9



More Detailed Models

More detailed models like Barry Boehm’s
COCOMO are not metrics per se, but complete
systems that consider all known factors that
affect software costs.

They can be fined tuned to an organization to
make very accurate estimates for the
organization.

However, they are very laborious to use.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 10



This Talk

This talk, based on Eli Kantorowitz’s paper
“Algorithm Simplification through Object
Orientation”, Software—Practice and
Experience, February, 1997, has two
purposes,

1. showing how object orientation (OO) can
indeed simplify programs in a way that
makes them demonstrably much easier to
develop and maintain, and

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 11



This Talk, Cont’d

2. introducing the first real programming
complexity measure, called logical
complexity, that really measures
development and maintenance difficulty.

These are done by examination of a specific
example of program development and
enhancement that was helped by use of OO.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 12



Logical Complexity Refined

Logical complexity is itself two measures,
development complexity and extension
complexity, measuring two different phases of
the lifecycle.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 13



The Breakthrough

The logical complexity measure is a real
breakthrough, but unfortunately, the measure
is a function of problem-specific data and not
of the code structure, as are the extant
measures.

Thus, the particular measure used for this
program measure cannot be used for another
program.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 14



The Breakthrough, Cont’d

However, the idea of finding such a measure
can be used anywhere; it just requires
creativity.

Given that code-structure based measures do
not work very well, maybe problem-specific
complexity functions are the way to go.

I have told you all this now, so that you will be
watching for the idea.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 15



Old vs. New Design Methods

Old Method:

g Design algorithm.
g Implement algorithm top-down (TD) in any

language.

It is believed that the algorithm can be
designed independently of the programming
language.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 16



Old vs. New Methods, Cont’d

New Method:

g Identify objects and their operations from
problem description.

g Write OO program using these objects.

OO programs mimic the real-world situation
that they model and are thus easier to
validate.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 17



Puzzle

Observation in case study:

A program developed by OO reasoning was
simpler to develop, understand, and maintain
than one developed by the traditional TD
method for the same application even though
both programs had the same time and space
complexity.

The OO program has a significantly smaller
logical complexity than the TD program.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 18



Case: CAD System

CAD system aided the design of a structure
with about 105 parts.

The system was 20 years old, complicated,
buggy, difficult to extend, and even more
difficult to extend with each extension.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 19



Case: CAD System, Cont’d

Thus, it was decided to re-engineer the
system, to build a new one with the same
functionality, that would be less complicated,
less buggy, easier to extend, and maybe even
not more difficult to extend with each
extension.

The old system was built in the traditional, TD
manner, and the new system was built in an
OO manner.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 20



A 2D Simplification

The system handled parts in 3D.

The description below is a 2D simplification to
allow easier visualization of the issues.

The complexity analyses will be given also for
the 3D case, as an obvious analogy to the 2D
case.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 21



Rectangular Parts
N

S

EW

N

S

EW

fi
xe

d

fixed flexible

Type
Standard

Type
Fitted

Standard and Fitted Parts.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 22



Rotation of Parts

Any part can be rotated any multiple of 90°.

N

S

EW
Type
Fitted

Type
FittedN S

W

E

Therefore, it is necessary to talk about fitted
faces (E and W) of fitted parts and standard
faces (N and S) of fitted parts.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 23



Fitting Parts Together

L RP

2.17

1.
00

Fitted part between two standard parts.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 24



Change Propagation

Through standard part or through N or S face
of fitted part.

t
4t

Before:

After:

1

t+d
4t+d

2 3 4

5

4321

5

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 25



Change Propagation, Cont’d

Through E or W face of fitted part.

t
4t

Before:

4321

5

4t

After:

4

5

321

t+c t-c

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 26



Propagation Rules

g When a standard face of a part P is pushed
a distance d, part P is moved d in the push
direction. The width of P along the push
direction is not changed.

g When a fitted face (E or W) of a fitted part
P is pushed a distance c, part P is not
moved. The width of P along the push
direction is reduced by c.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 27



Structure of Old Program

Designed TD.

Think of network of connected parts, e.g., for
the propagation examples above.

1 2 3 4

5

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 28



Structure, Cont’d

The main program builds the network.

When it is asked to apply a change to a part, it
follows the propagation rules.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 29



Structure, Cont’d

Thus, it must deal with the interface between
two parts.

There is one routine for each such interface,
that can be called by the main program.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 30



Number of Interface Routines

There are

g 2 part types
g 4 faces per part
g for a total of 2×4 = 8 face types
g for a total of 8×8 = 64 interfaces

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 31



Number of Routines, Cont’d

More generally in the 2D case

N face_types = N faces ×N types = 4×N types = 8

N interfaces = Nface_types
2 = 4×Ntypes

2 = 64

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 32



Behavior of 64 Interfaces
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

S-N S-E S-S S-W F-N F-E F-S F-Wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
S-N m m m m m a m aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
S-E m m m m m a m aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
S-S m m m m m a m aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
S-W m m m m m a m aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
F-N m m m m m a m aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
F-E a a a a a e a eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
F-S m m m m m a m aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
F-W a a a a a e a eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

a=absorb, m=move, e=error

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 33



Behavior of 64 Interfaces, Cont’d

This leads to 64 routines, one for each
possible interface.

The code for each routine is determined by the
rules for the interface represented by the
routine.

There is much code in common in these
routines, but no two are exactly the same.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 34



Behavior of 64 Interfaces, Cont’d

Keeping track of these minor differences is a
real headache.

Putting the common code into lower level
subroutines helps a bit in that what is
common is stands out as a larger fraction of
the code.

However, the minor differences are a real pain
to keep track of.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 35



3D Analysis

g 9 types of 3D parts
g 6 faces per part type

g N face_types = N types ×N faces = 9×6 = 54

g N interfaces = Nface_types
2 = 54×54 = 2916

g 2916 subroutines with lots of duplicated
code

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 36



Development Complexity

The development complexity (of the logical
complexity) in 2D and 3D cases of the TD
program is:

O (Ntypes
2 )

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 37



Difficulties

2916 subroutines with lots of duplicated code!

Difficult to program them correctly

Difficult to debug them

Difficult to manage them

Difficult to maintain them

Difficult to extend the program

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 38



Difficult to extend

Adding a new 2D part type with 4 faces

g 3 part types
g 4 faces per part
g for a total of 3×4 = 12 face types
g for a total of 12×12 = 144 interfaces
g 80 more than before

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 39



Difficult to extend, Cont’d

There are 80 more routines with lots of code in
common with the original 64, but no two are
exactly the same, for even more headache.

More generally,

(4×(N types + 1))2 − (4×N types )2 = 32×N types + 16

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 40



3D Analysis

Adding a new part type with 6 faces adds

(6×(N types + 1))2 − (6×N types )2 = 72×N types + 36

new interfaces to be managed.

If we had 9 parts to begin with, we now have
684 new interfaces to be managed.

If we had 10 parts to begin with, we now have
756 new interfaces to be managed.

etc.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 41



3D Analysis, Cont’d

As N types grows, extending the software
becomes very laborious and very error-prone
because of the minute differences in the face
of large amounts of common code.

Sometimes N types increases considerably.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 42



Extension Complexity

The extension complexity (of the logical
complexity) in 2D and 3D cases of the TD
program is:

O (N types )

And the multiplicative constants are large.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 43



Belady-Lehman Law

This is a classic example of the situation
described by the famous Belady-Lehman
graph!

Time

B
ug

s 
fo

un
d 

pe
r 

un
it 

tim
e

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 44



Note that this program is not BAD.

The original structure is good. It does
decompose the problem in such a way that
deciding what each routine does is very
systematic.

It could have been a lot worse, a whole lot.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 45



But at the point at which the number of bugs
per release seemed to be growing, it was time
to re-engineer the program.

This re-engineering was carried out in an OO
manner.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 46



Object Identification

Identify objects from real world

class part;

class standard public part;
class fitted public part;

standard fitted

part

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 47



Operation Identification

Identity operations on part, inherited by
subclasses.

push_on_N_face(float distance);
push_on_E_face(float distance);
push_on_W_face(float distance);
push_on_S_face(float distance);

The rules determine the code for each body.

Actually, the operations are virtual in part and
are defined in subclasses.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 48



Main Program
g builds graph of part connections with an

object of correct type at each node
g pushes on the correct face of the changed

part
g propagation

f a push on a fitted face is absorbed, the
containing part is shortened and no
propagation occurs

f a push on a standard face causes a
push to the neighbor on the opposite
face (sending a message)

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 49



Number of Operations in Part Class

There are
g 2 types
g 4 faces
g 2×4 = 8 face-type operations

More generally,

N operations = N types ×N faces = 2×4 = 8

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 50



3D Analysis

N operations = N types ×N faces = 9×6 = 54

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 51



Development Complexity

The development complexity (of the logical
complexity) in 2D and 3D cases of the OO
program is:

O (N types )

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 52



Adding New Type

If we add a new type with four faces, we must
add one more subclass to part and write its
four operations, adding 4 new operations for a
total of 3×4 = 12 face-type operations.

(4×(N types + 1)) − (4×N types ) = 4

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 53



3D Analysis

Adding a new part type with 6 faces adds

(6×(N types + 1)) − (6×N types) = 6

new operations to program, considerably
smaller than 684, and the number added per
new type does not grow!

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 54



Extension Complexity

The extension complexity (of the logical
complexity) in 2D and 3D cases of the OO
program is:

O (1)

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 55



Comparisons

Number of routines to program, the
development complexity:

g Old: O (Nface_types
2 )

g New: O (N face_types )

Note that O (N face_types ) = O (N types )

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 56



Comparisons, Cont’d

Number of routines to program for each new
part type, the extension complexity:

g Old: O (N face_types )

g New: O (1)

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 57



Qualitative analysis

Observe that the time and space complexities
of the new and old programs are the same.

Indeed, the irony is that (looking at the 2D
case) the code of each of the 64 interface
routines in the old program is the merger of
the code of two push routines in the new
program.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 58



Qualitative analysis, Cont’d

In the old program, the merger is done at
coding time.

In the new program, the merger is done at run
time.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 59



In Retrospect

We could have seen this decomposition of the
problem back then and could have used
macros equivalent to the bodies of the new
program push routines to build the 64
interface routines.

We did not, probably because we were just not
thinking that way back then.

Therefore, programming paradigms and
language features do make a difference.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 60



In Retrospect, Cont’d

They do suggest different ways to view a
problem, which in turn suggests different
ways to decompose the code into modules.

As Parnas observed with the KWIC example,
all of these different decompositions may end
up as the same run-time code with the same
performance.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 61



Logical Complexity

We call this complexity of programming the
logical complexity.

This is a true measure of programming effort.

Alas, it is very problem-specific, and is not
applicable to any other programming problem,
especially one that does not have any notion
of part types and faces, etc.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 62



Logical Complexity, Cont’d

Therefore, for each problem, it is necessary to
identify from scratch, the problem-specific
variables that are parameters of its logical
complexity.

Maybe this is the best that can be done, if one
wants something more accurate than the
existing measures based on code-structure.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 63



Logical Complexity, Cont’d

Note that this problem-specific logical
complexity is very accurate in its prediction of
development and maintenance effort.

This is more than can be said of the extant,
code-structure-based metrics.

Moreover, it requires a lot less effort to
calculate logical complexity than to use the
more accurate systems like COCOMO.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 64



Generalizing

Kantorowitz suggests finding

g some problem-dependent data P that
changes linearly with each change to the
problem, and

g some problem-dependent data C that
changes linearly with the amount of code
to be written anew or changed whenever P
changes.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 65



Generalizing, Cont’d

The function calculating C from P is
developmental complexity.

The function calculating ∆C from ∆P is the
extension complexity.

 1998 Daniel M. Berry Software Enginering OO Development Complexity Pg. 66


