
Review of
Topics

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 1



Software Engineering (SE)

Recall that software engineering is a multi-
pronged attack on the problems of producing
reliable software that meets clients needs.

Some of the techniques are for the individual,
some are for groups, and some are for entire
companies.

Some of the techniques are technical, some
are economic, some are managerial, some are
social, and some are psychological.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 2



Topics

• Myths of Software Development
• Information Hiding
• Object Orientation
• Testing
• Documentation
• Requirements Engineering
• Software Project Management

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 3



Purpose of Review

The purpose of this review is to remind you of
the salient points of each topic, now that you
have had a chance to digest them and later
topics.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 4



Common Themes

The common theme running through many,
but not all, topics is that of avoiding harmful
effects of inevitable changes

This can be done by two different approaches:
• making changes less likely, and/or
• limiting the effect of each change.

This theme is cost driven, as it is known that a
majority of the cost of software these days is
in its maintenance.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 5



Myths of Software Development

To begin the process of unlearning bad habits

• A lot of the folklore does not match reality.
• Unfortunately, decisions have been made

based on folklore rather than reality.
• Only by knowing reality can good

decisions be made.
• New reality is learned all the time, and it is

up to you to be questioning assumptions to
learn the realities.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 6



Abstract Data Typing -1

With an emphasis on being able to modify
implementations

• Abstraction is hiding implementation
details so that they can be changed without
affecting software that uses the
implemented functions or data.

• Abstract data typing is hiding the
implementation of data structures while
providing a full set of functions and
procedures with which to manipulate the
data.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 7



Abstract Data Typing -2

• Some languages, e.g., Ada, provide a
linguistic feature that enforces hiding by
means of encapsulation.

• The important thing is the concept, so that
even if one does not have a hiding-
enforcing language, one can build and use
abstract data types.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 8



Information Hiding -1

Both a method for decomposing software and
a demonstration that performance is
independent of modularization

• Information hiding is a method for
decomposing software into modules such
that at most one module, that implementing
a single concept, has to be changed when
the implementation of the concept is
changed, and in particular the rest of the
program, that uses the concept does not
have to be changed.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 9



Information Hiding -2

• Parnas suggests identifying good
decompositions by considering as many
implementation changes as possible and
seeing how many modules are affected by
each change.

• Parnas suggests the use of abstract data
types to make change-withstanding
modules for data.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 10



Information Hiding -3

• Parnas demonstrates that the running
object program generated from a modular
program can be identical to that generated
from a program designed specifically
around one implementation to be as
efficient as possible for a given situation;
hence use of modularity can carry no run-
time performance penalty.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 11



Object Orientation -1

With an emphasis on inheritance

• Object orientation is structuring software
into abstraction-modules such that each
instantiation of an abstraction corresponds
to an object in the real-world domain
modeled by the software.

• Modules structured this way resist change
simply because the real-life situation
changes very slowly compared to software.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 12



Object Orientation -2

• One key tool in building real-life-modeling
objects is inheritance that allows a
subclass to inherit properties, i.e., function
and data, from another more general class.

• Inheritance aids change resistance by
allowing grouping of properties that occur
in only some members of a class into a
subclass.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 13



Testing -1

Particularly of modular programs

• Testing is running a program with
contrived data for the purpose of finding
errors, and is not attempting to
demonstrate that the program is correct.

• Individual modules and whole programs
are tested against data generated from
both the specifications and the internal
structure.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 14



Testing -2

• Integration testing should proceed
module-by-module in order to be able to
easily isolate the modules involved in
discovered errors.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 15



Documentation

Of, by, and for modular programs

• It is impossible to carry out totally rational
design methods.

• It is possible to write documentation as if
the design were totally rational, i.e., to fake
it on the documentation.

• Such documentation, aimed for the
maintainers should show the modules,
their semantics, their interfaces, and the
implementation secrets that they hide.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 16



Requirements Engineering -1

Using modular requirements to an advantage

• The big problem is dealing with the
requirements engineer (RE)’s ignorance of
client’s domain and the client’s ignorance
of computing.

• Information hiding played at the domain
level can be used to hide the RE’s
ignorance so that he or she can work
intelligently with its abstractions.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 17



Requirements Engineering -2

• Ignorance of the client’s domain helps RE
to avoid falling into the tacit assumption
tarpit.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 18



Software Project Management -1

The way it ought to be and how to get it going

• In any project inolving more than one
person, management is needed to control
the nontechnical, human interaction,
issues that can dominate the technical
aspects if let be.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 19



Software Project Management -2

• While there is a large collection of
seemingly unrelated management
techniques, the key thing is to understand
the nontechnical issues and how explosive
they can be.

• A technique is used, not because it should
work, but because it does work.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 20



C++ is like teenage sex

• It is on everyone’s mind all the time.
• Everyone talks about it all the time.
• Everyone thinks everyone else is doing it.
• Almost no one is really doing it.
• The few that are doing it are:

- doing it poorly,
- sure it will be better next time, and
- not practicing it safely.

— Graffiti found in a toilet stall in the Faculty of
Computer Science, Technion, November, 1993

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 21



C++ and teenage sex

It should say, “Programming in C++ is like
teenage sex”.

And even that’s wrong!

It should really say, “Object-oriented
programming in C++ is like teenage sex”.

It is really inappropriate to equate OOP and
C++; you can do OOP without C++, and you
don’t need to do OOP when you use C++.

 1994 Daniel M. Berry Software Enginering Review of Topics Pg. 22


